Magnetic composite electroplating for depositing micromagnets

This paper reports a novel magnetic composite materials deposition technique called magnetic composite electroplating (MCE). Thin films and micromagnets arrays of a composite matrix consisting of magnetic particles and a ferromagnetic alloy have been fabricated based on this technique. In a typical...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 15; no. 2; pp. 330 - 337
Main Authors Shan Guan, Nelson, B.J.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper reports a novel magnetic composite materials deposition technique called magnetic composite electroplating (MCE). Thin films and micromagnets arrays of a composite matrix consisting of magnetic particles and a ferromagnetic alloy have been fabricated based on this technique. In a typical MCE process, magnetic particles are electrochemically and mechanically embedded into electroplated ferromagnetic thin films to form a magnetic particle-alloy composite. The magnetic particle selected is a barium ferrite magnet (BaFe/sub 12/O/sub 19/) and the ferromagnetic matrix is a pulse-reverse electroplated CoNiP alloy. The particle embedded fraction (w.t. %) directly affects magnetic properties and is experimentally determined by its energy dispersive spectrum (EDS). Various factors including electrolyte particle concentration, applied current, electrolyte pH, and the presence of cationic surfactants affecting the particle embedded fraction are experimentally investigated. Arrays of BaFe/sub 12/O/sub 19/-CoNiP magnets with a variety of dimensions and features as small as 8/spl mu/m have been realized by MCE. Experimental analysis shows that the composite exhibits magnetic properties, such as a high coercivity (H/sub c/) of up to 1.75/spl times/10/sup 5/ A/m, particularly well suited for MEMS actuators.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2005.863707