Metabolic Inactivation of Resolvin E1 and Stabilization of Its Anti-inflammatory Actions

The resolvins (Rv) are lipid mediators derived from omega-3 polyunsaturated fatty acids that act within a local inflammatory milieu to stop leukocyte recruitment and promote resolution. Resolvin E1 (RvE1; (5S,12R,18R)-trihydroxy-6Z,8E,10E,14Z,16E-eicosapentaenoic acid) is an oxygenase product derive...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 281; no. 32; pp. 22847 - 22854
Main Authors Arita, Makoto, Oh, Sungwhan F., Chonan, Tomomichi, Hong, Song, Elangovan, Siva, Sun, Yee-Ping, Uddin, Jasim, Petasis, Nicos A., Serhan, Charles N.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 11.08.2006
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The resolvins (Rv) are lipid mediators derived from omega-3 polyunsaturated fatty acids that act within a local inflammatory milieu to stop leukocyte recruitment and promote resolution. Resolvin E1 (RvE1; (5S,12R,18R)-trihydroxy-6Z,8E,10E,14Z,16E-eicosapentaenoic acid) is an oxygenase product derived from omega-3 eicosapentaenoic acid that displays potent anti-inflammation/pro-resolution actions in vivo. Here, we determined whether oxidoreductase enzymes catalyze the conversion of RvE1 and assessed the biological activity of the RvE1 metabolite. With NAD+ as a cofactor, recombinant 15-hydroxyprostaglandin dehydrogenase acted as an 18-hydroxyl dehydrogenase to form 18-oxo-RvE1. In the murine lung, dehydrogenation of the hydroxyl group at carbon 18 position to form 18-oxo-RvE1 represented the major initial metabolic route for RvE1. At a concentration where RvE1 potently reduced polymorphonuclear leukocyte (PMN) recruitment in zymosan-induced peritonitis, 18-oxo-RvE1 was devoid of activity. In human neutrophils, carbon 20 hydroxylation of RvE1 was the main route of conversion. An RvE1 analog, i.e. 19-(p-fluorophenoxy)-RvE1, was synthesized that resisted rapid metabolic inactivation and proved to retain biological activity reducing PMN infiltration and pro-inflammatory cytokine/chemokine production in vivo. These results established the structure of a novel RvE1 initial metabolite, indicating that conversion of RvE1 to the oxo product represents a mode of RvE1 inactivation. Moreover, the designed RvE1 analog, which resisted further metabolism/inactivation, could be a useful tool to evaluate the actions of RvE1 in complex disease models.
Bibliography:http://www.jbc.org/
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M603766200