MsrB1 Promotes Proliferation and Invasion of Colorectal Cancer Cells via GSK-3β/β-catenin Signaling Axis

Methionine sulfoxide reductase B1 (MsrB1) can catalyze both free and protein-bound R-methionine sulfoxides (R-MetO) to methionine (Met). It has been reported that MsrB1 plays an important role in the development of HCC and human bone osteosarcoma. However, little is known about the functions of MsrB...

Full description

Saved in:
Bibliographic Details
Published inCell transplantation Vol. 30; p. 9636897211053203
Main Authors Chen, Xiao-Yu, Yang, Sheng-Yong, Ruan, Xiao-Jie, Ding, Hong-Yue, Wang, Ning-Xi, Liu, Fang, Li, Jia-Chu, Li, Yi
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 2021
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Methionine sulfoxide reductase B1 (MsrB1) can catalyze both free and protein-bound R-methionine sulfoxides (R-MetO) to methionine (Met). It has been reported that MsrB1 plays an important role in the development of HCC and human bone osteosarcoma. However, little is known about the functions of MsrB1 in human colorectal cancer (CRC). Herein, we detected MsrB1 expression level in CRC tissue and cell lines, and investigated the effect of MsrB1 knockdown on CRC phenotypes and possible mechanisms involved in. The results showed that MsrB1 was highly expressed in both CRC tissues and cell lines, and that cell proliferation, migration and invasion were significantly inhibited, but apoptosis was increased after MsrB1 knockdown in colorectal cancer HCT116 and RKO cell lines, compared to control siRNA group. In addition, E-cadherin protein level was increased, vimentin and Snail protein were greatly decreased after knockdown of MsrB1 in cells. Furthermore, pGSK-3β (Ser9) and β-catenin protein levels were reduced, the promoter activity of TCF/LEF construction was inhibited after MsrB1 knockdown in cells, suggesting that GSK-3β/β-catenin signaling axis was involved in the tumorigenesis of CRC. In conclusion, the oncogenic role and related mechanisms of MsrB1 in CRC discovered in our work determined the potential role of MsrB1 as a biomarker and may provide a new target for clinical therapy of CRC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0963-6897
1555-3892
DOI:10.1177/09636897211053203