Nonlinear control of parallel manipulators for very high accelerations without velocity measurement: stability analysis and experiments on Par2 parallel manipulator

This paper presents a comparison between control/state estimation methods applied on Par2 parallel manipulator for pick-and-place applications as well as a discussion about the mechanical vibrations issue that may become important when reaching very high accelerations. Real-time experiments were per...

Full description

Saved in:
Bibliographic Details
Published inRobotica Vol. 34; no. 1; pp. 43 - 70
Main Authors Natal, Guilherme Sartori, Chemori, Ahmed, Pierrot, François
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a comparison between control/state estimation methods applied on Par2 parallel manipulator for pick-and-place applications as well as a discussion about the mechanical vibrations issue that may become important when reaching very high accelerations. Real-time experiments were performed first to compare two controllers (a linear Proportional-Derivative controller and a nonlinear/adaptive Dual Mode (DM) controller) complied with the same High-Gain Observer (HGO) to estimate articular velocities, and second to compare three state observers (a Lead-lag-based, an Alpha-beta-gamma (ABG) and an HGO) complied with the same nonlinear DM controller. The stability analysis of the Par2 robot under the control of the proposed DM controller (complied with the HighGO for joint velocity estimation) is also provided. Some small mechanical vibrations were noted when reaching 20 G acceleration, which means that it can become an important issue for higher accelerations. Some suggestions are then made for future investigations to avoid/damp these vibrations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0263-5747
1469-8668
DOI:10.1017/S0263574714001246