Purification and Characterization of Phosphonoglycans from Glycomyces sp. Strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338

Two related actinomycetes, Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338, were identified as potential phosphonic acid producers by screening for the gene encoding phosphoenolpyruvate (PEP) mutase, which is required for the biosynthesis of most phosphonates. Using a...

Full description

Saved in:
Bibliographic Details
Published inJournal of bacteriology Vol. 196; no. 9; pp. 1768 - 1779
Main Authors Yu, Xiaomin, Price, Neil P. J, Evans, Bradley S, Metcalf, William W
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two related actinomycetes, Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338, were identified as potential phosphonic acid producers by screening for the gene encoding phosphoenolpyruvate (PEP) mutase, which is required for the biosynthesis of most phosphonates. Using a variety of analytical techniques, both strains were subsequently shown to produce phosphonate-containing exopolysaccharides (EPS), also known as phosphonoglycans. The phosphonoglycans were purified by sequential organic solvent extractions, methanol precipitation, and ultrafiltration. The EPS from the Glycomyces strain has a mass of 40 to 50 kDa and is composed of galactose, xylose, and five distinct partially O-methylated galactose residues. Per-deutero-methylation analysis indicated that galactosyl residues in the polysaccharide backbone are 3,4-linked Gal, 2,4-linked 3-MeGal, 2,3-linked Gal, 3,6-linked 2-MeGal, and 4,6-linked 2,3-diMeGal. The EPS from the Stackebrandtia strain is comprised of glucose, galactose, xylose, and four partially O-methylated galactose residues. Isotopic labeling indicated that the O-methyl groups in the Stackebrandtia phosphonoglycan arise from S-adenosylmethionine. The phosphonate moiety in both phosphonoglycans was shown to be 2-hydroxyethylphosphonate (2-HEP) by 31P nuclear magnetic resonance (NMR) and mass spectrometry following strong acid hydrolysis of the purified molecules. Partial acid hydrolysis of the purified EPS from Glycomyces yielded 2-HEP in ester linkage to the O-5 or O-6 position of a hexose and a 2-HEP mono(2,3-dihydroxypropyl)ester. Partial acid hydrolysis of Stackebrandtia EPS also revealed the presence of 2-HEP mono(2,3-dihydroxypropyl)ester. Examination of the genome sequences of the two strains revealed similar pepM-containing gene clusters that are likely to be required for phosphonoglycan synthesis.
Bibliography:http://dx.doi.org/10.1128/JB.00036-14
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Bradley S. Evans, Donald Danforth Plant Science Center, Saint Louis, Missouri, USA.
ISSN:0021-9193
1098-5530
DOI:10.1128/jb.00036-14