I am all ears: Maximize maize doubled haploid success by promoting axillary branch elongation

The maize doubled haploid (DH) technology plays an important role in accelerating breeding genetic gain. One major challenge in fully leveraging the potential of DH technology to accelerate genetic gain is obtaining a consistent seed return from haploid (DH0) plants after chromosome doubling. Here w...

Full description

Saved in:
Bibliographic Details
Published inPlant direct Vol. 4; no. 5; pp. e00226 - n/a
Main Authors Wu, Miin‐Feng, Goldshmidt, Alexander, Ovadya, Daniel, Larue, Huachun
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.05.2020
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The maize doubled haploid (DH) technology plays an important role in accelerating breeding genetic gain. One major challenge in fully leveraging the potential of DH technology to accelerate genetic gain is obtaining a consistent seed return from haploid (DH0) plants after chromosome doubling. Here we demonstrated that DH0 seed production can be increased by increasing the number of mature axillary female inflorescences (ears) at anthesis. To determine the maximum capacity of a maize plant to develop ears, we first characterized the developmental progression of every axillary meristem. We found that all axillary meristems developed to a similar developmental stage before the reproductive transition of the shoot apical meristem (SAM). Upon reproductive transition of the SAM, all axillary meristems are released for reproductive development into ears in a developmental gradient reflective on their positions along the main stem. However, under most circumstances only the top one or two ears can generate silks at anthesis. We found that applying the GA inhibitor paclobutrazol (PAC) during the early reproductive transition of axillary meristems increased the number of silking ears at anthesis, leading to increased success of self‐pollination and seed production. These results provide a blueprint to improve DH efficiency and demonstrate the potential of breeding innovation through understanding crops’ developmental processes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2475-4455
2475-4455
DOI:10.1002/pld3.226