Glutamine improves heat stress-induced oxidative damage in the broiler thigh muscle by activating the nuclear factor erythroid 2-related 2/Kelch-like ECH-associated protein 1 signaling pathway
The aim of the present study was to evaluate the effect of glutamine (Gln) on modulating heat stress-induced oxidative damage in the broiler thigh muscle through nuclear factor erythroid 2-related 2/Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathway. Three-hundred 22-day-old Arbor Acres broile...
Saved in:
Published in | Poultry science Vol. 99; no. 3; pp. 1454 - 1461 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The aim of the present study was to evaluate the effect of glutamine (Gln) on modulating heat stress-induced oxidative damage in the broiler thigh muscle through nuclear factor erythroid 2-related 2/Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathway. Three-hundred 22-day-old Arbor Acres broilers were reallocated into 5 groups: a control group (24 °C) fed with basal diet and 4 heat stress (HS) groups (34 °C for 8 h/D) fed with basal diet containing 0, 0.5, 1.0, and 1.5% Gln. This experiment lasted 21 D. Heat stress decreased (P < 0.05) pH, redness, and Gln levels, and increased (P < 0.05) luminance, water loss rate, and cooking loss (CL) values of the thigh meat. Compared with the HS group, supplementation with 1.5% Gln increased (P < 0.05) pH, redness, and Gln levels, but decreased (P < 0.05) luminance and CL values in the thigh meat. There were significant decreases (P < 0.05) in glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and Nrf2 levels, but significant increases (P < 0.05) in the malondialdehyde (MDA) and Keap1 levels of the thigh muscle after HS treatment. Compared with the HS group, supplementation with 1.0, and 1.5% Gln decreased (P < 0.05) MDA and Keap1 levels; supplementation with 1.5% Gln increased (P < 0.05) GSH, GSH-Px, T-AOC, CAT, SOD, and Nrf2 levels in the thigh muscle of heat-stressed broilers. Furthermore, HS decreased (P < 0.05) Nrf2, SOD, CAT, and GSH-Px mRNA expression levels, but increased (P < 0.05) Keap1 mRNA level in the thigh muscle of broiler. Dietary supplementation with 1.5% Gln increased (P < 0.05) Nrf2, GSH-Px, CAT, and SOD mRNA expression levels, but decreased (P < 0.05) Keap1 mRNA level in the thigh muscle of heat-stressed broilers. In conclusion, dietary Gln improved the resistance of heat-stressed broiler muscles to oxidative damage possibly through reversing the muscle Gln level and inducing the expression of the Nrf2-Keap1 pathway. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 0032-5791 1525-3171 |
DOI: | 10.1016/j.psj.2019.11.001 |