Differentiating the causes of adynamic bone in advanced chronic kidney disease informs osteoporosis treatment

Patients with chronic kidney disease (CKD) have an increased fracture risk because of impaired bone quality and quantity. Low bone mineral density predicts fracture risk in all CKD stages, including advanced CKD (CKD G4-5D). Pharmacological therapy improves bone mineral density and reduces fracture...

Full description

Saved in:
Bibliographic Details
Published inKidney international Vol. 100; no. 3; pp. 546 - 558
Main Authors Haarhaus, Mathias, Evenepoel, Pieter
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Patients with chronic kidney disease (CKD) have an increased fracture risk because of impaired bone quality and quantity. Low bone mineral density predicts fracture risk in all CKD stages, including advanced CKD (CKD G4-5D). Pharmacological therapy improves bone mineral density and reduces fracture risk in moderate CKD. Its efficacy in advanced CKD remains to be determined, although pilot studies suggest a positive effect on bone mineral density. Currently, antiresorptive agents are the most commonly prescribed drugs for the prevention and therapy of osteoporosis. Their use in advanced CKD has been limited by the lack of large clinical trials and fear of causing kidney dysfunction and adynamic bone disease. In recent decades, adynamic bone disease has evolved as the most predominant form of renal osteodystrophy, commonly associated with poor outcomes, including premature mortality and progression of vascular calcification. Evolving evidence indicates that reduction of bone turnover by parathyroidectomy or pharmacological therapies, such as calcimimetics and antiresorptive agents, are not associated with premature mortality or accelerated vascular calcification in CKD. In contrast, chronic inflammation, oxidative stress, malnutrition, and diabetes can induce low bone turnover and associate with poor prognosis. Thus, the conditions causing suppression of bone turnover rather than the low bone turnover per se may account for the perceived association with outcomes. Anabolic treatment, in contrast, has been suggested to improve turnover and bone mass in patients with advanced CKD and low bone turnover; however, uncertainty about safety even exceeds that of antiresorptive agents. Here, we critically review the pathophysiological concept of adynamic bone disease and discuss the effect of low bone turnover on the safety and efficacy of anti-osteoporosis pharmacotherapy in advanced CKD.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0085-2538
1523-1755
1523-1755
DOI:10.1016/j.kint.2021.04.043