Random Phase Textures: Theory and Synthesis

This paper explores the mathematical and algorithmic properties of two sample-based texture models: random phase noise (RPN) and asymptotic discrete spot noise (ADSN). These models permit to synthesize random phase textures. They arguably derive from linearized versions of two early Julesz texture d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 20; no. 1; pp. 257 - 267
Main Authors Galerne, B, Gousseau, Y, Morel, J
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper explores the mathematical and algorithmic properties of two sample-based texture models: random phase noise (RPN) and asymptotic discrete spot noise (ADSN). These models permit to synthesize random phase textures. They arguably derive from linearized versions of two early Julesz texture discrimination theories. The ensuing mathematical analysis shows that, contrarily to some statements in the literature, RPN and ADSN are different stochastic processes. Nevertheless, numerous experiments also suggest that the textures obtained by these algorithms from identical samples are perceptually similar. The relevance of this study is enhanced by three technical contributions providing solutions to obstacles that prevented the use of RPN or ADSN to emulate textures. First, RPN and ADSN algorithms are extended to color images. Second, a preprocessing is proposed to avoid artifacts due to the nonperiodicity of real-world texture samples. Finally, the method is extended to synthesize textures with arbitrary size from a given sample.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2010.2052822