User-Friendly Tail Bounds for Sums of Random Matrices
This paper presents new probability inequalities for sums of independent, random, self-adjoint matrices. These results place simple and easily verifiable hypotheses on the summands, and they deliver strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum. Tail boun...
Saved in:
Published in | Foundations of computational mathematics Vol. 12; no. 4; pp. 389 - 434 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer-Verlag
01.08.2012
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents new probability inequalities for sums of independent, random, self-adjoint matrices. These results place simple and easily verifiable hypotheses on the summands, and they deliver strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum. Tail bounds for the norm of a sum of random rectangular matrices follow as an immediate corollary. The proof techniques also yield some information about matrix-valued martingales.
In other words, this paper provides noncommutative generalizations of the classical bounds associated with the names Azuma, Bennett, Bernstein, Chernoff, Hoeffding, and McDiarmid. The matrix inequalities promise the same diversity of application, ease of use, and strength of conclusion that have made the scalar inequalities so valuable. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
ISSN: | 1615-3375 1615-3383 |
DOI: | 10.1007/s10208-011-9099-z |