High-Pressure Torsion Affects Mechanical Properties, Electrochemical Behavior, and Cellular Response to a Biomedical Ti-Nb-Zr-Ta Alloy

This study investigates the microstructural evolution, mechanical properties, and biological response of the Ti-34Nb-2Ta-3Zr-0.5O (mass%) alloy processed by High-Pressure Torsion (HPT) at ambient temperature, focusing on its suitability for biomedical applications. The HPT process significantly incr...

Full description

Saved in:
Bibliographic Details
Published inMATERIALS TRANSACTIONS Vol. 66; no. 5; pp. 490 - 500
Main Authors Kesavan, Praveenkumar, Yadav, Mayank Kumar, Nilawar, Sagar, Chatterjee, Kaushik, Sahay, Saurish, Manivasagam, Geetha
Format Journal Article
LanguageEnglish
Published Sendai The Japan Institute of Metals and Materials 01.05.2025
公益社団法人 日本金属学会
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1345-9678
1347-5320
DOI10.2320/matertrans.MT-MC2024013

Cover

More Information
Summary:This study investigates the microstructural evolution, mechanical properties, and biological response of the Ti-34Nb-2Ta-3Zr-0.5O (mass%) alloy processed by High-Pressure Torsion (HPT) at ambient temperature, focusing on its suitability for biomedical applications. The HPT process significantly increased the fraction of high-angle grain boundaries, particularly in the range of 50–60°. Grain refinement was observed after both 2 and 4 turns of HPT; ultra-fine grain fraction increased with an increase in the number of turns of HPT. No phase transformations occurred during deformation. The bulk texture indicates the formation of a fibrous texture post-HPT processing. The hardness of the samples increased up to 348 HV after 4 turns compared to the alloy not subjected to HPT (280 HV). The HPT samples demonstrated higher Ecorr and lower Icorr values, indicating improved corrosion resistance in phosphate-buffered saline. In vitro cell studies revealed that HPT did significantly affect the viability and growth of osteoblasts on the TNTZ alloy. Taken together, these results establish HPT as a promising processing route for enhancing the biomedical performance of TNTZ toward developing high-performance bone implants.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1345-9678
1347-5320
DOI:10.2320/matertrans.MT-MC2024013