Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation

Cyclooxygenases-1 and -2 (COX-1 and -2) catalyze the committed step in prostaglandin formation. Each isozyme subserves different biological functions. This is, at least in part, a consequence of differences in patterns of COX-1 and COX-2 expression. COX-1 is induced during development, and COX-1 mRN...

Full description

Saved in:
Bibliographic Details
Published inProgress in lipid research Vol. 46; no. 2; pp. 108 - 125
Main Authors Kang, Yeon-Joo, Mbonye, Uri R., DeLong, Cynthia J., Wada, Masayuki, Smith, William L.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cyclooxygenases-1 and -2 (COX-1 and -2) catalyze the committed step in prostaglandin formation. Each isozyme subserves different biological functions. This is, at least in part, a consequence of differences in patterns of COX-1 and COX-2 expression. COX-1 is induced during development, and COX-1 mRNA and COX-1 protein are very stable. These latter properties can explain why COX-1 protein levels usually remain constant in those cells that express this isozyme. COX-2 is usually expressed inducibly in association with cell replication or differentiation. Both COX-2 mRNA and COX-2 protein have short half-lives relative to those of COX-1. Therefore, COX-2 protein is typically present for only a few hours after its synthesis. Here we review and develop the concepts that (a) COX-2 gene transcription can involve at least six different cis-acting promoter elements interacting with trans-acting factors generated by multiple, different signaling pathways, (b) the relative contribution of each cis-acting COX-2 promoter element depends on the cell type, the stimulus and the time following the stimulus and (c) a unique 27 amino acid instability element located just upstream of the C-terminus of COX-2 targets this isoform to the ER-associated degradation system and proteolysis by the cytosolic 26S proteasome.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0163-7827
1873-2194
DOI:10.1016/j.plipres.2007.01.001