TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding protein...
Saved in:
Published in | Frontiers in immunology Vol. 11; p. 608976 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
05.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications. |
---|---|
AbstractList | Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications.Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications. Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications. |
Author | Xu, Yan-Ran Lei, Cao-Qi |
AuthorAffiliation | Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan , China |
AuthorAffiliation_xml | – name: Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan , China |
Author_xml | – sequence: 1 givenname: Yan-Ran surname: Xu fullname: Xu, Yan-Ran – sequence: 2 givenname: Cao-Qi surname: Lei fullname: Lei, Cao-Qi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33469458$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAUhS1UREvpA7BBWbLJEMe_YYE0HRUYUakSDGvrxrkeXMX2EGcQfftmmha1SPXG1vU539HVeU2OYopIyFtaLRjTzQfnQ9gv6qquFrLSjZIvyAmVkpesrvnRo_cxOcv5upoObxhj4hU5ZozLhgt9Qs43y2-03CzPc7FKYdfj34_FslhhHAfoix9-G6FPOQUsfCzW0fUQAoxpuCm-Y96lmDG_IS8d9BnP7u9T8vPzxWb1tby8-rJeLS9LKxgdSyo65UAiUNd2KEB2UoLmABwdrTijUncKW0epU5K2GsAhA15r1TkK3LFTsp65XYJrsxt8gOHGJPDmbpCGrYFh9LZHY8HWSqDV1bQm57qtlFCsa53mnWgbnFifZtZu3wbs7LzvE-jTn-h_mW36Y5SmTCo-Ad7fA4b0e495NMFni30PEdM-m5qrhlPdNGKSvnuc9S_koYRJoGaBHVLOAzpj_QijT4do3xtamUPj5q5xc2jczI1PTvqf8wH-vOcWDEyv1w |
CitedBy_id | crossref_primary_10_3390_cancers16142509 crossref_primary_10_1007_s11255_022_03419_7 crossref_primary_10_1016_j_celrep_2023_112700 crossref_primary_10_1172_jci_insight_158996 crossref_primary_10_1038_s41419_024_06654_1 crossref_primary_10_3390_app14093755 crossref_primary_10_1124_pharmrev_120_000170 crossref_primary_10_2147_IDR_S424746 crossref_primary_10_1016_j_drudis_2021_10_001 crossref_primary_10_1038_s41598_024_81212_5 crossref_primary_10_1042_CS20230728 crossref_primary_10_3390_cancers15174246 crossref_primary_10_3390_ijms22116041 crossref_primary_10_1177_10738584221106114 crossref_primary_10_1038_s41419_021_03744_2 crossref_primary_10_3390_ijms242417542 crossref_primary_10_1016_j_biopha_2023_115746 crossref_primary_10_3390_biomedicines12122723 crossref_primary_10_1002_ctm2_1204 crossref_primary_10_1111_jcmm_70522 crossref_primary_10_3390_ijms25010213 crossref_primary_10_1002_advs_202309002 crossref_primary_10_1083_jcb_202404131 crossref_primary_10_1002_mc_23348 crossref_primary_10_1007_s13346_022_01212_8 crossref_primary_10_3390_polym14040697 crossref_primary_10_1038_s41419_023_05945_3 crossref_primary_10_1007_s44307_024_00021_z crossref_primary_10_3389_fnmol_2022_879146 crossref_primary_10_1111_febs_70042 crossref_primary_10_1038_s41392_024_01977_z crossref_primary_10_1038_s41467_024_48588_4 crossref_primary_10_1111_acel_70013 crossref_primary_10_3390_ijms241511905 crossref_primary_10_3389_fimmu_2023_1274654 crossref_primary_10_1002_glia_24222 crossref_primary_10_1042_BCJ20220271 crossref_primary_10_1007_s13205_023_03637_5 crossref_primary_10_1016_j_aqrep_2024_102607 crossref_primary_10_1038_s41467_024_48708_0 crossref_primary_10_1016_j_bcp_2023_116009 crossref_primary_10_1080_17460794_2024_2415216 crossref_primary_10_1155_2022_1217918 crossref_primary_10_3390_biom14080940 crossref_primary_10_7717_peerj_16419 crossref_primary_10_1007_s10123_023_00428_z crossref_primary_10_1007_s00210_024_03666_8 crossref_primary_10_1016_j_ijbiomac_2024_133025 crossref_primary_10_1038_s41467_022_29752_0 crossref_primary_10_1186_s12985_023_02259_w crossref_primary_10_2147_JIR_S448091 crossref_primary_10_1038_s41418_022_00939_8 crossref_primary_10_1186_s12943_024_02217_2 crossref_primary_10_1038_s41419_022_05541_x crossref_primary_10_3390_biomedicines9080922 crossref_primary_10_3390_cells11213509 crossref_primary_10_3389_fimmu_2023_1281882 crossref_primary_10_1186_s12964_025_02149_4 crossref_primary_10_3389_fcell_2021_734749 crossref_primary_10_1016_j_fsi_2023_108857 crossref_primary_10_1007_s10753_025_02249_w crossref_primary_10_1186_s12964_022_00901_8 crossref_primary_10_1038_s44161_024_00579_w crossref_primary_10_3390_biomedicines11123229 crossref_primary_10_3390_fishes7040173 crossref_primary_10_1096_fj_202201436R crossref_primary_10_1007_s12031_025_02313_y crossref_primary_10_1038_s41598_023_38696_4 crossref_primary_10_1016_j_pharmthera_2025_108810 crossref_primary_10_1038_s12276_024_01372_2 crossref_primary_10_1186_s12943_024_02172_y crossref_primary_10_1021_acs_jmedchem_4c01938 crossref_primary_10_1093_lifemeta_loac006 crossref_primary_10_29219_fnr_v66_8963 crossref_primary_10_1096_fj_202201839R crossref_primary_10_3389_fendo_2024_1486608 crossref_primary_10_59717_j_xinn_life_2024_100085 crossref_primary_10_3389_fmolb_2021_701959 crossref_primary_10_1016_j_bpj_2021_06_037 crossref_primary_10_1155_jfbc_7841565 crossref_primary_10_2174_0115701611258090231221082502 crossref_primary_10_1016_j_intimp_2022_109148 crossref_primary_10_1038_s41419_022_05335_1 crossref_primary_10_2147_JIR_S458948 crossref_primary_10_1002_1873_3468_14716 crossref_primary_10_3389_fceld_2024_1465506 crossref_primary_10_1038_s41418_023_01115_2 crossref_primary_10_1186_s12864_022_08780_6 crossref_primary_10_1093_glycob_cwad087 crossref_primary_10_1002_bies_202400127 crossref_primary_10_1007_s10266_023_00798_w crossref_primary_10_1080_19490976_2024_2446376 crossref_primary_10_1016_j_humgen_2023_201180 crossref_primary_10_1038_s41401_024_01295_8 crossref_primary_10_1080_13543784_2022_2159804 crossref_primary_10_3389_fimmu_2024_1403764 crossref_primary_10_1016_j_fsi_2022_03_008 crossref_primary_10_3389_fmolb_2023_1132353 crossref_primary_10_1002_bies_202300003 crossref_primary_10_1038_s41564_022_01278_7 crossref_primary_10_1016_j_isci_2022_104780 crossref_primary_10_3889_seejim_2023_6055 crossref_primary_10_1007_s40256_023_00609_1 crossref_primary_10_1002_humu_24425 crossref_primary_10_1186_s10020_025_01103_x crossref_primary_10_1111_1462_2920_15487 crossref_primary_10_1016_j_intimp_2023_111028 crossref_primary_10_1111_aji_13664 crossref_primary_10_1186_s12964_025_02114_1 crossref_primary_10_31083_j_fbl2905169 crossref_primary_10_1161_JAHA_124_034962 crossref_primary_10_3390_cells11233781 crossref_primary_10_1111_obr_13818 crossref_primary_10_1080_02699052_2024_2361623 crossref_primary_10_3390_cancers13184510 crossref_primary_10_3389_fimmu_2022_974310 crossref_primary_10_1172_jci_insight_165358 |
Cites_doi | 10.1016/S0092-8674(00)80406-7 10.1002/jcb.24573 10.1042/BJ20071149 10.1074/jbc.M802825200 10.1038/cr.2010.175 10.1016/S0022-2836(02)01404-3 10.1016/j.it.2013.03.007 10.15252/embr.201642573 10.1016/j.cell.2008.01.020 10.1074/jbc.M608867200 10.1007/s11010-013-1815-3 10.1101/gad.1360605 10.1074/jbc.275.10.7359 10.1038/ni1577 10.1074/jbc.M608155200 10.1093/emboj/17.4.1019 10.1074/jbc.M112.412643 10.1074/jbc.M701913200 10.1126/science.1126867 10.1146/annurev.immunol.16.1.225 10.1042/bj20031794 10.1101/gad.203301 10.1016/j.cellsig.2006.08.017 10.1016/j.cell.2009.01.041 10.1016/j.molcel.2004.08.008 10.1007/s00018-008-8064-8 10.1016/j.chembiol.2017.07.011 10.1146/annurev-immunol-042617-053253 10.4049/jimmunol.1900083 10.1007/s12192-013-0426-y 10.1016/j.cyto.2008.07.010 10.1038/cdd.2011.11 10.1016/j.molcel.2010.09.010 10.1016/j.molcel.2009.10.002 10.1016/j.cell.2005.11.007 10.1016/j.ccr.2008.06.001 10.1038/cdd.2008.60 10.1038/nrm3915 10.1016/j.bone.2018.05.009 10.1126/scisignal.2000387 10.1016/S0092-8674(00)80984-8 10.4049/jimmunol.1302537 10.1002/iub.1078 10.1038/cmi.2011.11 10.1038/35085597 10.1016/S0014-5793(00)01588-X 10.3389/fimmu.2017.01827 10.1073/pnas.1110946108 10.1038/ni.2065 10.1038/nri2634 10.1126/science.272.5265.1179 10.1038/sj.onc.1210413 10.1016/S0092-8674(00)00126-4 10.1074/jbc.M111.285122 10.1074/jbc.272.12.7727 10.1038/nature08247 10.1016/S0925-4773(02)00391-X 10.1042/BCJ20170288 10.1038/s41388-019-1088-8 10.1038/srep12738 10.1074/jbc.M109.093468 10.15252/embj.201488351 10.1038/nri1391 10.1126/science.270.5244.2008 10.1126/stke.2003.171.re3 10.1016/S1074-7613(00)80402-1 10.1016/j.molcel.2007.11.019 10.1101/gad.1228704 10.1111/febs.15202 10.1016/j.tibs.2004.11.009 10.1038/nature07201 10.1002/hep.30485 10.1016/j.aca.2019.03.042 10.1371/journal.ppat.1004522 10.1146/annurev.immunol.14.1.649 10.1074/jbc.M407537200 10.1038/embor.2009.210 10.1038/cmi.2015.27 10.1038/srep12300 10.1016/j.tibs.2003.12.003 10.1371/journal.pone.0029256 10.1016/j.tips.2012.06.007 10.1016/0092-8674(95)90070-5 10.1038/nature10690 10.1093/emboj/cdg605 10.15252/embr.201948035 10.1111/j.1600-065X.2012.01108.x 10.1074/jbc.M304802200 10.1038/ng0298-143 10.1146/annurev.cellbio.22.010605.093503 10.1073/pnas.0608995103 10.1073/pnas.1318227111 10.1038/emboj.2012.8 10.1016/j.febslet.2015.07.051 10.1016/j.cellsig.2010.09.006 10.1084/jem.20062694 10.1016/j.immuni.2011.12.010 10.1074/jbc.M116.734079 10.1101/cshperspect.a000158 10.1074/jbc.M603384200 10.1038/18465 10.1126/science.271.5252.1128 10.1074/jbc.M114.559963 10.1074/jbc.M411189200 10.1074/jbc.M007773200 10.1038/ncb1780 10.1038/ncb1823 10.1038/ni.2157 10.1038/cdd.2011.29 10.1038/ncb1384 10.1007/s00535-013-0931-x 10.1074/jbc.M600620200 10.1038/nature05485 10.1074/jbc.M807574200 10.1126/scisignal.2005903 10.1073/pnas.1008203109 10.1084/jem.20080297 10.1126/science.278.5343.1612 10.18632/oncotarget.8182 10.1042/BJ20090616 10.1016/j.ceb.2004.02.005 10.4049/jimmunol.1900171 10.1093/emboj/cdg552 10.1039/C7AN00954B 10.4049/jimmunol.1300989 10.1111/gtc.12442 10.1038/ni1255 10.1084/jem.20132640 10.1016/j.cellsig.2010.11.017 10.3892/ijmm.2018.3881 10.1074/jbc.M109.076976 10.1084/jem.20122327 10.1016/S1097-2765(00)80244-0 10.1111/j.1600-065X.2011.01088.x 10.1038/ncb0805-758 10.1074/jbc.M800943200 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Xu and Lei. Copyright © 2021 Xu and Lei 2021 Xu and Lei |
Copyright_xml | – notice: Copyright © 2021 Xu and Lei. – notice: Copyright © 2021 Xu and Lei 2021 Xu and Lei |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fimmu.2020.608976 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
ExternalDocumentID | oai_doaj_org_article_cac275ec80694448b07573dbf84d5b9e PMC7813674 33469458 10_3389_fimmu_2020_608976 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c531t-15d7fa6ea1fbde5a6d66a84aa4ef1043168d7ebf11f761b8aafe3a4287df1a4f3 |
IEDL.DBID | M48 |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:29:10 EDT 2025 Thu Aug 21 18:18:15 EDT 2025 Fri Jul 11 15:31:34 EDT 2025 Thu Jan 02 22:56:52 EST 2025 Tue Jul 01 01:32:31 EDT 2025 Thu Apr 24 23:13:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NF-κB TABs post-translational modifications TAK1 inflammation |
Language | English |
License | Copyright © 2021 Xu and Lei. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c531t-15d7fa6ea1fbde5a6d66a84aa4ef1043168d7ebf11f761b8aafe3a4287df1a4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Inflammation, a section of the journal Frontiers in Immunology Reviewed by: Neil J. Grimsey, University of Georgia, United States; Jae Hyuck Shim, University of Massachusetts Medical School, United States Edited by: Massimo Gadina, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2020.608976 |
PMID | 33469458 |
PQID | 2479418995 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cac275ec80694448b07573dbf84d5b9e pubmedcentral_primary_oai_pubmedcentral_nih_gov_7813674 proquest_miscellaneous_2479418995 pubmed_primary_33469458 crossref_citationtrail_10_3389_fimmu_2020_608976 crossref_primary_10_3389_fimmu_2020_608976 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-05 |
PublicationDateYYYYMMDD | 2021-01-05 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in immunology |
PublicationTitleAlternate | Front Immunol |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Inagaki (B78) 2008; 283 Viatour (B11) 2005; 30 Mittal (B127) 2006; 103 Wesche (B56) 1997; 272 Wang (B131) 2014; 385 Mendoza (B39) 2008; 409 Hsu (B68) 1996; 84 Ahmed (B99) 2011; 12 Tian (B54) 2007; 282 Yao (B125) 2014; 10 Shim (B20) 2005; 19 Cheung (B35) 2004; 378 Wang (B46) 2001; 412 Perry (B100) 1998; 18 Chen (B28) 2005; 7 Lei (B94) 2019; 203 Pathak (B133) 2012; 31 Zhang (B126) 2016; 291 Reiley (B115) 2007; 204 Wullaert (B14) 2011; 21 Yang (B112) 2015; 5 Wang (B123) 2017; 142 Chen (B8) 2012; 246 Yamamoto (B10) 2004; 29 Kim (B108) 2018; 113 Zhou (B119) 2020; 287 Medzhitov (B1) 2009; 9 Yamazaki (B65) 2009; 2 Hunter (B102) 2007; 28 Roh (B50) 2014; 49 Omori (B48) 2006; 281 Groves (B132) 2013; 18 Ajibade (B26) 2013; 34 Paquette (B129) 2012; 109 Kerscher (B130) 2006; 22 Dunne (B53) 2003; 2003 Tan (B107) 2015; 589 Zhang (B37) 2017; 474 Zheng (B82) 2013; 288 Chen (B47) 2015; 5 Theivanthiran (B103) 2015; 8 Xu (B9) 2009; 36 Yang (B104) 2017; 18 Kenny (B61) 2008; 43 Li (B67) 2011; 108 Hamidi (B97) 2012; 287 Prickett (B79) 2008; 283 Liu (B111) 2013; 210 Hu (B109) 2014; 111 Bertelsen (B77) 2007; 19 Takaesu (B34) 2000; 5 Yamaguchi (B16) 1995; 270 Ouyang (B76) 2014; 289 Verstrepen (B55) 2008; 65 Adhikari (B45) 2007; 26 Mukherjee (B128) 2006; 312 Dai (B23) 2012; 64 Biggar (B121) 2015; 16 Wolf (B88) 2011; 6 Carpenter (B60) 2009; 422 Baldwin (B7) 1996; 14 Totzke (B51) 2017; 24 Fan (B113) 2011; 18 Hotamisligil (B2) 2006; 444 Muzio (B58) 1997; 278 Nijman (B110) 2005; 123 Kobayashi (B86) 2005; 280 Sorrentino (B96) 2008; 10 Li (B71) 2006; 281 Sun (B91) 2004; 16 Matsuzawa-Ishimoto (B4) 2018; 36 Hayden (B12) 2008; 132 Silverman (B19) 2003; 278 Sakurai (B49) 2012; 33 Deng (B64) 2000; 103 Melino (B117) 2008; 15 Mukhopadhyay (B17) 2020; 39 Kishimoto (B38) 2000; 275 Hsu (B69) 1995; 81 Scholz (B74) 2010; 285 Ajibade (B32) 2012; 36 Shibuya (B33) 1996; 272 Zhao (B136) 2011; 8 Fan (B52) 2010; 285 Sakurai (B73) 2000; 474 Xiao (B80) 2014; 211 Kanayama (B41) 2004; 15 Takaesu (B21) 2003; 326 Sato (B135) 2005; 6 Komatsu (B30) 2002; 119 Wesche (B57) 1997; 7 Tao (B134) 2016; 7 Besse (B36) 2007; 282 Zhang (B124) 2011; 481 Israel (B44) 2010; 2 Ye (B83) 2019; 69 Fan (B98) 2011; 23 Shinohara (B25) 2016; 21 Hayden (B6) 2004; 18 Dou (B106) 2019; 203 Zhang (B118) 2018; 42 Mao (B92) 2011; 23 Shi (B105) 2008; 9 Xia (B62) 2009; 461 Lamb (B95) 2009; 10 Bernassola (B116) 2008; 14 Yang (B81) 2014; 192 Wang (B114) 2020; 21 Neubert (B29) 2011; 18 Zandi (B43) 1997; 91 Ninomiya-Tsuji (B27) 1999; 398 Medzhitov (B3) 2008; 454 Hanada (B84) 2001; 276 Wang (B122) 2019; 1068 Wu (B70) 2006; 8 Akira (B72) 2004; 4 Chang (B24) 2015; 12 Lamb (B93) 2013; 114 Singhirunnusorn (B75) 2005; 280 Ishitani (B40) 2003; 22 Xu (B90) 2009; 137 Oeckinghaus (B13) 2011; 12 Cheung (B42) 2003; 22 Liu (B89) 2009; 11 Tang (B31) 2008; 205 Kajino (B85) 2006; 281 Vidal (B18) 2001; 15 Sun (B22) 2012; 246 Yu (B63) 2008; 283 Charlaftis (B101) 2014; 33 Shibuya (B15) 1998; 17 Ghosh (B5) 1998; 16 Cao (B59) 1996; 271 Wu (B66) 2010; 40 Gu (B87) 2014; 192 Min (B120) 2017; 8 |
References_xml | – volume: 91 year: 1997 ident: B43 article-title: The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation publication-title: Cell doi: 10.1016/S0092-8674(00)80406-7 – volume: 114 year: 2013 ident: B93 article-title: Helicobacter pylori activates NF-kappaB by inducing Ubc13-mediated ubiquitination of lysine 158 of TAK1 publication-title: J Cell Biochem doi: 10.1002/jcb.24573 – volume: 409 year: 2008 ident: B39 article-title: Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex publication-title: Biochem J doi: 10.1042/BJ20071149 – volume: 283 year: 2008 ident: B63 article-title: Phosphorylation of Thr-178 and Thr-184 in the TAK1 T-loop is required for interleukin (IL)-1-mediated optimal NFkappaB and AP-1 activation as well as IL-6 gene expression publication-title: J Biol Chem doi: 10.1074/jbc.M802825200 – volume: 21 year: 2011 ident: B14 article-title: NF-kappaB in the regulation of epithelial homeostasis and inflammation publication-title: Cell Res doi: 10.1038/cr.2010.175 – volume: 326 year: 2003 ident: B21 article-title: TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)01404-3 – volume: 34 year: 2013 ident: B26 article-title: Cell type-specific function of TAK1 in innate immune signaling publication-title: Trends Immunol doi: 10.1016/j.it.2013.03.007 – volume: 18 year: 2017 ident: B104 article-title: The E3 ubiquitin ligase RNF114 and TAB1 degradation are required for maternal-to-zygotic transition publication-title: EMBO Rep doi: 10.15252/embr.201642573 – volume: 132 year: 2008 ident: B12 article-title: Shared principles in NF-kappaB signaling publication-title: Cell doi: 10.1016/j.cell.2008.01.020 – volume: 282 year: 2007 ident: B36 article-title: TAK1-dependent signaling requires functional interaction with TAB2/TAB3 publication-title: J Biol Chem doi: 10.1074/jbc.M608867200 – volume: 385 start-page: 69 year: 2014 ident: B131 article-title: TAB2, an important upstream adaptor of interleukin-1 signaling pathway, is subject to SUMOylation publication-title: Mol Cell Biochem doi: 10.1007/s11010-013-1815-3 – volume: 19 year: 2005 ident: B20 article-title: TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo publication-title: Genes Dev doi: 10.1101/gad.1360605 – volume: 275 year: 2000 ident: B38 article-title: TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop publication-title: J Biol Chem doi: 10.1074/jbc.275.10.7359 – volume: 9 year: 2008 ident: B105 article-title: TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation publication-title: Nat Immunol doi: 10.1038/ni1577 – volume: 281 year: 2006 ident: B85 article-title: Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway publication-title: J Biol Chem doi: 10.1074/jbc.M608155200 – volume: 17 year: 1998 ident: B15 article-title: Role of TAK1 and TAB1 in BMP signaling in early Xenopus development publication-title: EMBO J doi: 10.1093/emboj/17.4.1019 – volume: 288 year: 2013 ident: B82 article-title: The dual-specificity phosphatase DUSP14 negatively regulates tumor necrosis factor- and interleukin-1-induced nuclear factor-kappaB activation by dephosphorylating the protein kinase TAK1 publication-title: J Biol Chem doi: 10.1074/jbc.M112.412643 – volume: 282 year: 2007 ident: B54 article-title: RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation publication-title: J Biol Chem doi: 10.1074/jbc.M701913200 – volume: 312 year: 2006 ident: B128 article-title: Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation publication-title: Science doi: 10.1126/science.1126867 – volume: 16 year: 1998 ident: B5 article-title: NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.16.1.225 – volume: 378 start-page: 27 year: 2004 ident: B35 article-title: TAB3, a new binding partner of the protein kinase TAK1 publication-title: Biochem J doi: 10.1042/bj20031794 – volume: 15 year: 2001 ident: B18 article-title: Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses publication-title: Genes Dev doi: 10.1101/gad.203301 – volume: 19 year: 2007 ident: B77 article-title: TAB1 modulates IL-1alpha mediated cytokine secretion but is dispensable for TAK1 activation publication-title: Cell Signal doi: 10.1016/j.cellsig.2006.08.017 – volume: 137 year: 2009 ident: B90 article-title: Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation publication-title: Cell doi: 10.1016/j.cell.2009.01.041 – volume: 15 year: 2004 ident: B41 article-title: TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains publication-title: Mol Cell doi: 10.1016/j.molcel.2004.08.008 – volume: 65 year: 2008 ident: B55 article-title: TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme publication-title: Cell Mol Life Sci doi: 10.1007/s00018-008-8064-8 – volume: 24 start-page: 1029 year: 2017 ident: B51 article-title: Takinib, a Selective TAK1 Inhibitor, Broadens the Therapeutic Efficacy of TNF-alpha Inhibition for Cancer and Autoimmune Disease publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2017.07.011 – volume: 36 start-page: 73 year: 2018 ident: B4 article-title: Autophagy and Inflammation publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-042617-053253 – volume: 203 year: 2019 ident: B94 article-title: USP19 Inhibits TNF-alpha- and IL-1beta-Triggered NF-kappaB Activation by Deubiquitinating TAK1 publication-title: J Immunol doi: 10.4049/jimmunol.1900083 – volume: 18 year: 2013 ident: B132 article-title: Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis publication-title: Cell Stress Chaperones doi: 10.1007/s12192-013-0426-y – volume: 43 year: 2008 ident: B61 article-title: Signalling adaptors used by Toll-like receptors: an update publication-title: Cytokine doi: 10.1016/j.cyto.2008.07.010 – volume: 18 year: 2011 ident: B113 article-title: USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation publication-title: Cell Death Differ doi: 10.1038/cdd.2011.11 – volume: 40 start-page: 75 year: 2010 ident: B66 article-title: ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress publication-title: Mol Cell doi: 10.1016/j.molcel.2010.09.010 – volume: 36 year: 2009 ident: B9 article-title: A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta publication-title: Mol Cell doi: 10.1016/j.molcel.2009.10.002 – volume: 123 year: 2005 ident: B110 article-title: A genomic and functional inventory of deubiquitinating enzymes publication-title: Cell doi: 10.1016/j.cell.2005.11.007 – volume: 14 start-page: 10 year: 2008 ident: B116 article-title: The HECT family of E3 ubiquitin ligases: multiple players in cancer development publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.06.001 – volume: 15 year: 2008 ident: B117 article-title: Itch: a HECT-type E3 ligase regulating immunity, skin and cancer publication-title: Cell Death Differ doi: 10.1038/cdd.2008.60 – volume: 16 start-page: 5 year: 2015 ident: B121 article-title: Non-histone protein methylation as a regulator of cellular signalling and function publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3915 – volume: 113 start-page: 17 year: 2018 ident: B108 article-title: TRIM38 regulates NF-kappaB activation through TAB2 degradation in osteoclast and osteoblast differentiation publication-title: Bone doi: 10.1016/j.bone.2018.05.009 – volume: 2 start-page: ra66 year: 2009 ident: B65 article-title: Two mechanistically and temporally distinct NF-kappaB activation pathways in IL-1 signaling publication-title: Sci Signal doi: 10.1126/scisignal.2000387 – volume: 84 start-page: 299 year: 1996 ident: B68 article-title: TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways publication-title: Cell doi: 10.1016/S0092-8674(00)80984-8 – volume: 192 year: 2014 ident: B87 article-title: Phosphatase holoenzyme PP1/GADD34 negatively regulates TLR response by inhibiting TAK1 serine 412 phosphorylation publication-title: J Immunol doi: 10.4049/jimmunol.1302537 – volume: 64 year: 2012 ident: B23 article-title: TAK1, more than just innate immunity publication-title: IUBMB Life doi: 10.1002/iub.1078 – volume: 8 year: 2011 ident: B136 article-title: An essential role for TAK1 in the contact hypersensitivity response publication-title: Cell Mol Immunol doi: 10.1038/cmi.2011.11 – volume: 412 year: 2001 ident: B46 article-title: TAK1 is a ubiquitin-dependent kinase of MKK and IKK publication-title: Nature doi: 10.1038/35085597 – volume: 474 year: 2000 ident: B73 article-title: Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1 publication-title: FEBS Lett doi: 10.1016/S0014-5793(00)01588-X – volume: 8 year: 2017 ident: B120 article-title: Ubiquitin-Specific Protease 14 Negatively Regulates Toll-Like Receptor 4-Mediated Signaling and Autophagy Induction by Inhibiting Ubiquitination of TAK1-Binding Protein 2 and Beclin 1 publication-title: Front Immunol doi: 10.3389/fimmu.2017.01827 – volume: 108 year: 2011 ident: B67 article-title: Tripartite motif 8 (TRIM8) modulates TNFalpha- and IL-1beta-triggered NF-kappaB activation by targeting TAK1 for K63-linked polyubiquitination publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1110946108 – volume: 12 start-page: 695 year: 2011 ident: B13 article-title: Crosstalk in NF-kappaB signaling pathways publication-title: Nat Immunol doi: 10.1038/ni.2065 – volume: 9 start-page: 692 year: 2009 ident: B1 article-title: Transcriptional control of the inflammatory response publication-title: Nat Rev Immunol doi: 10.1038/nri2634 – volume: 272 year: 1996 ident: B33 article-title: TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction publication-title: Science doi: 10.1126/science.272.5265.1179 – volume: 26 year: 2007 ident: B45 article-title: Ubiquitin-mediated activation of TAK1 and IKK publication-title: Oncogene doi: 10.1038/sj.onc.1210413 – volume: 103 year: 2000 ident: B64 article-title: Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain publication-title: Cell doi: 10.1016/S0092-8674(00)00126-4 – volume: 287 year: 2012 ident: B97 article-title: Polyubiquitination of transforming growth factor beta (TGFbeta)-associated kinase 1 mediates nuclear factor-kappaB activation in response to different inflammatory stimuli publication-title: J Biol Chem doi: 10.1074/jbc.M111.285122 – volume: 272 year: 1997 ident: B56 article-title: The interleukin-1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases) publication-title: J Biol Chem doi: 10.1074/jbc.272.12.7727 – volume: 461 year: 2009 ident: B62 article-title: Direct activation of protein kinases by unanchored polyubiquitin chains publication-title: Nature doi: 10.1038/nature08247 – volume: 119 year: 2002 ident: B30 article-title: Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis publication-title: Mech Dev doi: 10.1016/S0925-4773(02)00391-X – volume: 474 year: 2017 ident: B37 article-title: Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3 publication-title: Biochem J doi: 10.1042/BCJ20170288 – volume: 39 year: 2020 ident: B17 article-title: Multifaceted roles of TAK1 signaling in cancer publication-title: Oncogene doi: 10.1038/s41388-019-1088-8 – volume: 5 start-page: 12738 year: 2015 ident: B112 article-title: USP18 negatively regulates NF-kappaB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms publication-title: Sci Rep doi: 10.1038/srep12738 – volume: 285 year: 2010 ident: B74 article-title: Autoactivation of transforming growth factor beta-activated kinase 1 is a sequential bimolecular process publication-title: J Biol Chem doi: 10.1074/jbc.M109.093468 – volume: 33 year: 2014 ident: B101 article-title: The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines publication-title: EMBO J doi: 10.15252/embj.201488351 – volume: 4 start-page: 499 year: 2004 ident: B72 article-title: Toll-like receptor signalling publication-title: Nat Rev Immunol doi: 10.1038/nri1391 – volume: 270 year: 1995 ident: B16 article-title: Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction publication-title: Science doi: 10.1126/science.270.5244.2008 – volume: 2003 start-page: re3 year: 2003 ident: B53 article-title: The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense publication-title: Sci STKE doi: 10.1126/stke.2003.171.re3 – volume: 7 year: 1997 ident: B57 article-title: MyD88: an adapter that recruits IRAK to the IL-1 receptor complex publication-title: Immunity doi: 10.1016/S1074-7613(00)80402-1 – volume: 28 year: 2007 ident: B102 article-title: The age of crosstalk: phosphorylation, ubiquitination, and beyond publication-title: Mol Cell doi: 10.1016/j.molcel.2007.11.019 – volume: 18 year: 2004 ident: B6 article-title: Signaling to NF-kappaB publication-title: Genes Dev doi: 10.1101/gad.1228704 – volume: 287 year: 2020 ident: B119 article-title: USP15 potentiates NF-kappaB activation by differentially stabilizing TAB2 and TAB3 publication-title: FEBS J doi: 10.1111/febs.15202 – volume: 30 start-page: 43 year: 2005 ident: B11 article-title: Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2004.11.009 – volume: 454 year: 2008 ident: B3 article-title: Origin and physiological roles of inflammation publication-title: Nature doi: 10.1038/nature07201 – volume: 69 year: 2019 ident: B83 article-title: Dual-Specificity Phosphatase 26 Protects Against Nonalcoholic Fatty Liver Disease in Mice Through Transforming Growth Factor Beta-Activated Kinase 1 Suppression publication-title: Hepatology doi: 10.1002/hep.30485 – volume: 1068 year: 2019 ident: B122 article-title: A new chromatographic approach to analyze methylproteome with enhanced lysine methylation identification performance publication-title: Anal Chim Acta doi: 10.1016/j.aca.2019.03.042 – volume: 10 start-page: e1004522 year: 2014 ident: B125 article-title: Structure and specificity of the bacterial cysteine methyltransferase effector NleE suggests a novel substrate in human DNA repair pathway publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004522 – volume: 14 year: 1996 ident: B7 article-title: The NF-kappa B and I kappa B proteins: new discoveries and insights publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.14.1.649 – volume: 280 year: 2005 ident: B75 article-title: Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-beta-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2 publication-title: J Biol Chem doi: 10.1074/jbc.M407537200 – volume: 10 year: 2009 ident: B95 article-title: Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination publication-title: EMBO Rep doi: 10.1038/embor.2009.210 – volume: 12 year: 2015 ident: B24 article-title: Survival and maintenance of regulatory T cells require the kinase TAK1 publication-title: Cell Mol Immunol doi: 10.1038/cmi.2015.27 – volume: 5 start-page: 12300 year: 2015 ident: B47 article-title: Polyubiquitination of Transforming Growth Factor beta-activated Kinase 1 (TAK1) at Lysine 562 Residue Regulates TLR4-mediated JNK and p38 MAPK Activation publication-title: Sci Rep doi: 10.1038/srep12300 – volume: 29 year: 2004 ident: B10 article-title: IkappaB kinases: key regulators of the NF-kappaB pathway publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2003.12.003 – volume: 6 start-page: e29256 year: 2011 ident: B88 article-title: Identification and functional characterization of novel phosphorylation sites in TAK1-binding protein (TAB) 1 publication-title: PLoS One doi: 10.1371/journal.pone.0029256 – volume: 33 year: 2012 ident: B49 article-title: Targeting of TAK1 in inflammatory disorders and cancer publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2012.06.007 – volume: 81 start-page: 495 year: 1995 ident: B69 article-title: The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation publication-title: Cell doi: 10.1016/0092-8674(95)90070-5 – volume: 481 year: 2011 ident: B124 article-title: Cysteine methylation disrupts ubiquitin-chain sensing in NF-kappaB activation publication-title: Nature doi: 10.1038/nature10690 – volume: 22 year: 2003 ident: B40 article-title: Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling publication-title: EMBO J doi: 10.1093/emboj/cdg605 – volume: 21 start-page: e48035 year: 2020 ident: B114 article-title: The p38-interacting protein p38IP suppresses TCR and LPS signaling by targeting TAK1 publication-title: EMBO Rep doi: 10.15252/embr.201948035 – volume: 246 start-page: 95 year: 2012 ident: B8 article-title: Ubiquitination in signaling to and activation of IKK publication-title: Immunol Rev doi: 10.1111/j.1600-065X.2012.01108.x – volume: 278 year: 2003 ident: B19 article-title: Immune activation of NF-kappaB and JNK requires Drosophila TAK1 publication-title: J Biol Chem doi: 10.1074/jbc.M304802200 – volume: 18 year: 1998 ident: B100 article-title: The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice publication-title: Nat Genet doi: 10.1038/ng0298-143 – volume: 22 year: 2006 ident: B130 article-title: Modification of proteins by ubiquitin and ubiquitin-like proteins publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.22.010605.093503 – volume: 103 year: 2006 ident: B127 article-title: Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0608995103 – volume: 111 year: 2014 ident: B109 article-title: TRIM38 inhibits TNFalpha- and IL-1beta-triggered NF-kappaB activation by mediating lysosome-dependent degradation of TAB2/3 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1318227111 – volume: 31 year: 2012 ident: B133 article-title: O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release publication-title: EMBO J doi: 10.1038/emboj.2012.8 – volume: 589 year: 2015 ident: B107 article-title: RNF4 negatively regulates NF-kappaB signaling by down-regulating TAB2 publication-title: FEBS Lett doi: 10.1016/j.febslet.2015.07.051 – volume: 23 year: 2011 ident: B92 article-title: TAK1 lysine 158 is required for TGF-beta-induced TRAF6-mediated Smad-independent IKK/NF-kappaB and JNK/AP-1 activation publication-title: Cell Signal doi: 10.1016/j.cellsig.2010.09.006 – volume: 204 year: 2007 ident: B115 article-title: Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses publication-title: J Exp Med doi: 10.1084/jem.20062694 – volume: 36 start-page: 43 year: 2012 ident: B32 article-title: TAK1 negatively regulates NF-kappaB and p38 MAP kinase activation in Gr-1+CD11b+ neutrophils publication-title: Immunity doi: 10.1016/j.immuni.2011.12.010 – volume: 291 year: 2016 ident: B126 article-title: Identification of a Distinct Substrate-binding Domain in the Bacterial Cysteine Methyltransferase Effectors NleE and OspZ publication-title: J Biol Chem doi: 10.1074/jbc.M116.734079 – volume: 2 start-page: a000158 year: 2010 ident: B44 article-title: The IKK complex, a central regulator of NF-kappaB activation publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a000158 – volume: 281 year: 2006 ident: B48 article-title: TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis publication-title: J Biol Chem doi: 10.1074/jbc.M603384200 – volume: 398 year: 1999 ident: B27 article-title: The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway publication-title: Nature doi: 10.1038/18465 – volume: 271 year: 1996 ident: B59 article-title: IRAK: a kinase associated with the interleukin-1 receptor publication-title: Science doi: 10.1126/science.271.5252.1128 – volume: 289 year: 2014 ident: B76 article-title: Transforming growth factor (TGF)-beta-activated kinase 1 (TAK1) activation requires phosphorylation of serine 412 by protein kinase A catalytic subunit alpha (PKACalpha) and X-linked protein kinase (PRKX) publication-title: J Biol Chem doi: 10.1074/jbc.M114.559963 – volume: 280 year: 2005 ident: B86 article-title: Prostaglandin E2 enhances osteoclastic differentiation of precursor cells through protein kinase A-dependent phosphorylation of TAK1 publication-title: J Biol Chem doi: 10.1074/jbc.M411189200 – volume: 276 year: 2001 ident: B84 article-title: Regulation of the TAK1 signaling pathway by protein phosphatase 2C publication-title: J Biol Chem doi: 10.1074/jbc.M007773200 – volume: 10 year: 2008 ident: B96 article-title: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner publication-title: Nat Cell Biol doi: 10.1038/ncb1780 – volume: 11 year: 2009 ident: B89 article-title: Interaction between TAK1-TAB1-TAB2 and RCAN1-calcineurin defines a signalling nodal control point publication-title: Nat Cell Biol doi: 10.1038/ncb1823 – volume: 12 year: 2011 ident: B99 article-title: The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation publication-title: Nat Immunol doi: 10.1038/ni.2157 – volume: 18 year: 2011 ident: B29 article-title: Acute inhibition of TAK1 protects against neuronal death in cerebral ischemia publication-title: Cell Death Differ doi: 10.1038/cdd.2011.29 – volume: 8 start-page: 398 year: 2006 ident: B70 article-title: Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected] publication-title: Nat Cell Biol doi: 10.1038/ncb1384 – volume: 49 year: 2014 ident: B50 article-title: TAK1 regulates hepatic cell survival and carcinogenesis publication-title: J Gastroenterol doi: 10.1007/s00535-013-0931-x – volume: 281 year: 2006 ident: B71 article-title: Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation publication-title: J Biol Chem doi: 10.1074/jbc.M600620200 – volume: 444 year: 2006 ident: B2 article-title: Inflammation and metabolic disorders publication-title: Nature doi: 10.1038/nature05485 – volume: 283 year: 2008 ident: B78 article-title: TAK1-binding protein 1, TAB1, mediates osmotic stress-induced TAK1 activation but is dispensable for TAK1-mediated cytokine signaling publication-title: J Biol Chem doi: 10.1074/jbc.M807574200 – volume: 8 start-page: ra22 year: 2015 ident: B103 article-title: The E3 ubiquitin ligase Itch inhibits p38alpha signaling and skin inflammation through the ubiquitylation of Tab1 publication-title: Sci Signal doi: 10.1126/scisignal.2005903 – volume: 109 year: 2012 ident: B129 article-title: Serine/threonine acetylation of TGFbeta-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1008203109 – volume: 205 year: 2008 ident: B31 article-title: TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice publication-title: J Exp Med doi: 10.1084/jem.20080297 – volume: 278 year: 1997 ident: B58 article-title: IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling publication-title: Science doi: 10.1126/science.278.5343.1612 – volume: 7 year: 2016 ident: B134 article-title: TAB3 O-GlcNAcylation promotes metastasis of triple negative breast cancer publication-title: Oncotarget doi: 10.18632/oncotarget.8182 – volume: 422 start-page: 1 year: 2009 ident: B60 article-title: Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins publication-title: Biochem J doi: 10.1042/BJ20090616 – volume: 16 year: 2004 ident: B91 article-title: The novel functions of ubiquitination in signaling publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2004.02.005 – volume: 203 year: 2019 ident: B106 article-title: Identification of the E3 Ligase TRIM29 as a Critical Checkpoint Regulator of NK Cell Functions publication-title: J Immunol doi: 10.4049/jimmunol.1900171 – volume: 22 year: 2003 ident: B42 article-title: Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha publication-title: EMBO J doi: 10.1093/emboj/cdg552 – volume: 142 year: 2017 ident: B123 article-title: Strategies for large-scale analysis of non-histone protein methylation by LC-MS/MS publication-title: Analyst doi: 10.1039/C7AN00954B – volume: 192 year: 2014 ident: B81 article-title: Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation publication-title: J Immunol doi: 10.4049/jimmunol.1300989 – volume: 21 year: 2016 ident: B25 article-title: TAK1 maintains the survival of immunoglobulin lambda-chain-positive B cells publication-title: Genes to Cells doi: 10.1111/gtc.12442 – volume: 6 year: 2005 ident: B135 article-title: Essential function for the kinase TAK1 in innate and adaptive immune responses publication-title: Nat Immunol doi: 10.1038/ni1255 – volume: 211 year: 2014 ident: B80 article-title: TPL2 mediates autoimmune inflammation through activation of the TAK1 axis of IL-17 signaling publication-title: J Exp Med doi: 10.1084/jem.20132640 – volume: 23 year: 2011 ident: B98 article-title: TAK1 Lys-158 but not Lys-209 is required for IL-1beta-induced Lys63-linked TAK1 polyubiquitination and IKK/NF-kappaB activation publication-title: Cell Signal doi: 10.1016/j.cellsig.2010.11.017 – volume: 42 year: 2018 ident: B118 article-title: Effect of deubiquitinase USP8 on hypoxia/reoxygenationinduced inflammation by deubiquitination of TAK1 in renal tubular epithelial cells publication-title: Int J Mol Med doi: 10.3892/ijmm.2018.3881 – volume: 285 year: 2010 ident: B52 article-title: Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NF-kappaB and JNK/AP-1 activation publication-title: J Biol Chem doi: 10.1074/jbc.M109.076976 – volume: 210 year: 2013 ident: B111 article-title: USP18 inhibits NF-kappaB and NFAT activation during Th17 differentiation by deubiquitinating the TAK1-TAB1 complex publication-title: J Exp Med doi: 10.1084/jem.20122327 – volume: 5 year: 2000 ident: B34 article-title: TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80244-0 – volume: 246 year: 2012 ident: B22 article-title: The noncanonical NF-kappaB pathway publication-title: Immunol Rev doi: 10.1111/j.1600-065X.2011.01088.x – volume: 7 year: 2005 ident: B28 article-title: Ubiquitin signalling in the NF-kappaB pathway publication-title: Nat Cell Biol doi: 10.1038/ncb0805-758 – volume: 283 year: 2008 ident: B79 article-title: TAB4 stimulates TAK1-TAB1 phosphorylation and binds polyubiquitin to direct signaling to NF-kappaB publication-title: J Biol Chem doi: 10.1074/jbc.M800943200 |
SSID | ssj0000493335 |
Score | 2.6019964 |
SecondaryResourceType | review_article |
Snippet | Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 608976 |
SubjectTerms | Immunology inflammation NF-κB post-translational modifications TABs TAK1 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEG_CS0HihBS2dvwKtxaxWkBwgK60N8uPMRRtU0RbCf49M3G2ahGCC5ccEjsZjceZ-ezxN4w9Q8gQjRDQAGKHRiaTmpCixYu2prPCmEjnnd9_0Kdn8u25Ot8r9UU5YYUeuCjuOPoojIJo6YQmYomAPs60KWQrkwod0N8Xfd4emPpa4t62bVXZxkQU1h3nxXK5RTwoJi_0xHbEMbLniAa-_j8Fmb_nSu45n5Mb7PoYNdbTIu1NdgX6W-xqqSP58zabzafveDOfztY1ze8L-PGyntbjwm39afEZO6_WqyXUi75-02e0guWwu15_LCmysL7Dzk5ez1-dNmNxhCbitNk0XCWTvQbPc0igvE5aeyu9l5A5MeZomwyEzHk2mgfrfYbWE0BKmXuZ27vsqF_1cJ-ObUfZJaGDVxMJRgahrMg8iI5nab2o2ORSUy6OzOFUwOLCIYIg5bpBuY6U64pyK_Z81-Vboc34W-MZqX_XkBivhxtoB260A_cvO6jY08vBczhDaNvD97Darp0gEn2OuFJV7F4ZzN2n2lbi65StmDkY5gNZDp_0iy8DC7exxHYnH_wP4R-ya4JyZWhpRz1iR5vvW3iMwc4mPBns-hcuKP2i priority: 102 providerName: Directory of Open Access Journals |
Title | TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33469458 https://www.proquest.com/docview/2479418995 https://pubmed.ncbi.nlm.nih.gov/PMC7813674 https://doaj.org/article/cac275ec80694448b07573dbf84d5b9e |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGEBIvE99kwBQknpAyasdfRZpQixgDNB6glfpm2bE9OrXJaFpp--93l6QVRRUSL35IbCc53-Xu54_fEfIGIEOhGAtZAOyQca985nyhoZBa9TVTqsDzzuff5dmYf52IyR5Zp7fqBFjvhHaYT2q8mB1f_775AAZ_gogT_O27OJ3PVwD1WO9Y9jT41zvkLjgmhXZ63kX7l20wnOdNyk0qJc9AlXm7zrm7ly1P1RD674pC_95M-Yd3On1ADrqwMh20evCQ7IXyEbnXJpq8eUyGo8E3mo0GwzrFH8AsXL9PB2k3s5v-nF5A46qu5iGdlumXMoKazJvl9_RHu4c21E_I-PTT6ONZ1mVPyAqwq2VGhVfRymBpdD4IK72UVnNreYgUKXWk9iq4SGlUkjptbQy5RQTlI7U85k_JflmV4Tme6y543zPprOjxoLhjQrNIHevTyLVlCemtJWWKjlocM1zMDEAMFK5phGtQuKYVbkLebppctbwa_6o8RPFvKiIldnOhWlyYzsJMYQumRCg0HuUF0OkgGFK5d1FzL1w_JOT1evAMmBCui9gyVKvaMGTZpwA8RUKetYO5eVSec-hO6ISorWHeepftO-X0V0PTrTTS4fHD__nSF-Q-w00zOMcjXpL95WIVXkHUs3RHzWwBlJ8n9KjR61sbTQD8 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TAK1-TABs+Complex%3A+A+Central+Signalosome+in+Inflammatory+Responses&rft.jtitle=Frontiers+in+immunology&rft.au=Xu%2C+Yan-Ran&rft.au=Lei%2C+Cao-Qi&rft.date=2021-01-05&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=11&rft_id=info:doi/10.3389%2Ffimmu.2020.608976&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2020_608976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |