TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses

Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding protein...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 11; p. 608976
Main Authors Xu, Yan-Ran, Lei, Cao-Qi
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 05.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications.
AbstractList Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications.Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications.
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications.
Author Xu, Yan-Ran
Lei, Cao-Qi
AuthorAffiliation Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan , China
AuthorAffiliation_xml – name: Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan , China
Author_xml – sequence: 1
  givenname: Yan-Ran
  surname: Xu
  fullname: Xu, Yan-Ran
– sequence: 2
  givenname: Cao-Qi
  surname: Lei
  fullname: Lei, Cao-Qi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33469458$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS1UREvpA7BBWbLJEMe_YYE0HRUYUakSDGvrxrkeXMX2EGcQfftmmha1SPXG1vU539HVeU2OYopIyFtaLRjTzQfnQ9gv6qquFrLSjZIvyAmVkpesrvnRo_cxOcv5upoObxhj4hU5ZozLhgt9Qs43y2-03CzPc7FKYdfj34_FslhhHAfoix9-G6FPOQUsfCzW0fUQAoxpuCm-Y96lmDG_IS8d9BnP7u9T8vPzxWb1tby8-rJeLS9LKxgdSyo65UAiUNd2KEB2UoLmABwdrTijUncKW0epU5K2GsAhA15r1TkK3LFTsp65XYJrsxt8gOHGJPDmbpCGrYFh9LZHY8HWSqDV1bQm57qtlFCsa53mnWgbnFifZtZu3wbs7LzvE-jTn-h_mW36Y5SmTCo-Ad7fA4b0e495NMFni30PEdM-m5qrhlPdNGKSvnuc9S_koYRJoGaBHVLOAzpj_QijT4do3xtamUPj5q5xc2jczI1PTvqf8wH-vOcWDEyv1w
CitedBy_id crossref_primary_10_3390_cancers16142509
crossref_primary_10_1007_s11255_022_03419_7
crossref_primary_10_1016_j_celrep_2023_112700
crossref_primary_10_1172_jci_insight_158996
crossref_primary_10_1038_s41419_024_06654_1
crossref_primary_10_3390_app14093755
crossref_primary_10_1124_pharmrev_120_000170
crossref_primary_10_2147_IDR_S424746
crossref_primary_10_1016_j_drudis_2021_10_001
crossref_primary_10_1038_s41598_024_81212_5
crossref_primary_10_1042_CS20230728
crossref_primary_10_3390_cancers15174246
crossref_primary_10_3390_ijms22116041
crossref_primary_10_1177_10738584221106114
crossref_primary_10_1038_s41419_021_03744_2
crossref_primary_10_3390_ijms242417542
crossref_primary_10_1016_j_biopha_2023_115746
crossref_primary_10_3390_biomedicines12122723
crossref_primary_10_1002_ctm2_1204
crossref_primary_10_1111_jcmm_70522
crossref_primary_10_3390_ijms25010213
crossref_primary_10_1002_advs_202309002
crossref_primary_10_1083_jcb_202404131
crossref_primary_10_1002_mc_23348
crossref_primary_10_1007_s13346_022_01212_8
crossref_primary_10_3390_polym14040697
crossref_primary_10_1038_s41419_023_05945_3
crossref_primary_10_1007_s44307_024_00021_z
crossref_primary_10_3389_fnmol_2022_879146
crossref_primary_10_1111_febs_70042
crossref_primary_10_1038_s41392_024_01977_z
crossref_primary_10_1038_s41467_024_48588_4
crossref_primary_10_1111_acel_70013
crossref_primary_10_3390_ijms241511905
crossref_primary_10_3389_fimmu_2023_1274654
crossref_primary_10_1002_glia_24222
crossref_primary_10_1042_BCJ20220271
crossref_primary_10_1007_s13205_023_03637_5
crossref_primary_10_1016_j_aqrep_2024_102607
crossref_primary_10_1038_s41467_024_48708_0
crossref_primary_10_1016_j_bcp_2023_116009
crossref_primary_10_1080_17460794_2024_2415216
crossref_primary_10_1155_2022_1217918
crossref_primary_10_3390_biom14080940
crossref_primary_10_7717_peerj_16419
crossref_primary_10_1007_s10123_023_00428_z
crossref_primary_10_1007_s00210_024_03666_8
crossref_primary_10_1016_j_ijbiomac_2024_133025
crossref_primary_10_1038_s41467_022_29752_0
crossref_primary_10_1186_s12985_023_02259_w
crossref_primary_10_2147_JIR_S448091
crossref_primary_10_1038_s41418_022_00939_8
crossref_primary_10_1186_s12943_024_02217_2
crossref_primary_10_1038_s41419_022_05541_x
crossref_primary_10_3390_biomedicines9080922
crossref_primary_10_3390_cells11213509
crossref_primary_10_3389_fimmu_2023_1281882
crossref_primary_10_1186_s12964_025_02149_4
crossref_primary_10_3389_fcell_2021_734749
crossref_primary_10_1016_j_fsi_2023_108857
crossref_primary_10_1007_s10753_025_02249_w
crossref_primary_10_1186_s12964_022_00901_8
crossref_primary_10_1038_s44161_024_00579_w
crossref_primary_10_3390_biomedicines11123229
crossref_primary_10_3390_fishes7040173
crossref_primary_10_1096_fj_202201436R
crossref_primary_10_1007_s12031_025_02313_y
crossref_primary_10_1038_s41598_023_38696_4
crossref_primary_10_1016_j_pharmthera_2025_108810
crossref_primary_10_1038_s12276_024_01372_2
crossref_primary_10_1186_s12943_024_02172_y
crossref_primary_10_1021_acs_jmedchem_4c01938
crossref_primary_10_1093_lifemeta_loac006
crossref_primary_10_29219_fnr_v66_8963
crossref_primary_10_1096_fj_202201839R
crossref_primary_10_3389_fendo_2024_1486608
crossref_primary_10_59717_j_xinn_life_2024_100085
crossref_primary_10_3389_fmolb_2021_701959
crossref_primary_10_1016_j_bpj_2021_06_037
crossref_primary_10_1155_jfbc_7841565
crossref_primary_10_2174_0115701611258090231221082502
crossref_primary_10_1016_j_intimp_2022_109148
crossref_primary_10_1038_s41419_022_05335_1
crossref_primary_10_2147_JIR_S458948
crossref_primary_10_1002_1873_3468_14716
crossref_primary_10_3389_fceld_2024_1465506
crossref_primary_10_1038_s41418_023_01115_2
crossref_primary_10_1186_s12864_022_08780_6
crossref_primary_10_1093_glycob_cwad087
crossref_primary_10_1002_bies_202400127
crossref_primary_10_1007_s10266_023_00798_w
crossref_primary_10_1080_19490976_2024_2446376
crossref_primary_10_1016_j_humgen_2023_201180
crossref_primary_10_1038_s41401_024_01295_8
crossref_primary_10_1080_13543784_2022_2159804
crossref_primary_10_3389_fimmu_2024_1403764
crossref_primary_10_1016_j_fsi_2022_03_008
crossref_primary_10_3389_fmolb_2023_1132353
crossref_primary_10_1002_bies_202300003
crossref_primary_10_1038_s41564_022_01278_7
crossref_primary_10_1016_j_isci_2022_104780
crossref_primary_10_3889_seejim_2023_6055
crossref_primary_10_1007_s40256_023_00609_1
crossref_primary_10_1002_humu_24425
crossref_primary_10_1186_s10020_025_01103_x
crossref_primary_10_1111_1462_2920_15487
crossref_primary_10_1016_j_intimp_2023_111028
crossref_primary_10_1111_aji_13664
crossref_primary_10_1186_s12964_025_02114_1
crossref_primary_10_31083_j_fbl2905169
crossref_primary_10_1161_JAHA_124_034962
crossref_primary_10_3390_cells11233781
crossref_primary_10_1111_obr_13818
crossref_primary_10_1080_02699052_2024_2361623
crossref_primary_10_3390_cancers13184510
crossref_primary_10_3389_fimmu_2022_974310
crossref_primary_10_1172_jci_insight_165358
Cites_doi 10.1016/S0092-8674(00)80406-7
10.1002/jcb.24573
10.1042/BJ20071149
10.1074/jbc.M802825200
10.1038/cr.2010.175
10.1016/S0022-2836(02)01404-3
10.1016/j.it.2013.03.007
10.15252/embr.201642573
10.1016/j.cell.2008.01.020
10.1074/jbc.M608867200
10.1007/s11010-013-1815-3
10.1101/gad.1360605
10.1074/jbc.275.10.7359
10.1038/ni1577
10.1074/jbc.M608155200
10.1093/emboj/17.4.1019
10.1074/jbc.M112.412643
10.1074/jbc.M701913200
10.1126/science.1126867
10.1146/annurev.immunol.16.1.225
10.1042/bj20031794
10.1101/gad.203301
10.1016/j.cellsig.2006.08.017
10.1016/j.cell.2009.01.041
10.1016/j.molcel.2004.08.008
10.1007/s00018-008-8064-8
10.1016/j.chembiol.2017.07.011
10.1146/annurev-immunol-042617-053253
10.4049/jimmunol.1900083
10.1007/s12192-013-0426-y
10.1016/j.cyto.2008.07.010
10.1038/cdd.2011.11
10.1016/j.molcel.2010.09.010
10.1016/j.molcel.2009.10.002
10.1016/j.cell.2005.11.007
10.1016/j.ccr.2008.06.001
10.1038/cdd.2008.60
10.1038/nrm3915
10.1016/j.bone.2018.05.009
10.1126/scisignal.2000387
10.1016/S0092-8674(00)80984-8
10.4049/jimmunol.1302537
10.1002/iub.1078
10.1038/cmi.2011.11
10.1038/35085597
10.1016/S0014-5793(00)01588-X
10.3389/fimmu.2017.01827
10.1073/pnas.1110946108
10.1038/ni.2065
10.1038/nri2634
10.1126/science.272.5265.1179
10.1038/sj.onc.1210413
10.1016/S0092-8674(00)00126-4
10.1074/jbc.M111.285122
10.1074/jbc.272.12.7727
10.1038/nature08247
10.1016/S0925-4773(02)00391-X
10.1042/BCJ20170288
10.1038/s41388-019-1088-8
10.1038/srep12738
10.1074/jbc.M109.093468
10.15252/embj.201488351
10.1038/nri1391
10.1126/science.270.5244.2008
10.1126/stke.2003.171.re3
10.1016/S1074-7613(00)80402-1
10.1016/j.molcel.2007.11.019
10.1101/gad.1228704
10.1111/febs.15202
10.1016/j.tibs.2004.11.009
10.1038/nature07201
10.1002/hep.30485
10.1016/j.aca.2019.03.042
10.1371/journal.ppat.1004522
10.1146/annurev.immunol.14.1.649
10.1074/jbc.M407537200
10.1038/embor.2009.210
10.1038/cmi.2015.27
10.1038/srep12300
10.1016/j.tibs.2003.12.003
10.1371/journal.pone.0029256
10.1016/j.tips.2012.06.007
10.1016/0092-8674(95)90070-5
10.1038/nature10690
10.1093/emboj/cdg605
10.15252/embr.201948035
10.1111/j.1600-065X.2012.01108.x
10.1074/jbc.M304802200
10.1038/ng0298-143
10.1146/annurev.cellbio.22.010605.093503
10.1073/pnas.0608995103
10.1073/pnas.1318227111
10.1038/emboj.2012.8
10.1016/j.febslet.2015.07.051
10.1016/j.cellsig.2010.09.006
10.1084/jem.20062694
10.1016/j.immuni.2011.12.010
10.1074/jbc.M116.734079
10.1101/cshperspect.a000158
10.1074/jbc.M603384200
10.1038/18465
10.1126/science.271.5252.1128
10.1074/jbc.M114.559963
10.1074/jbc.M411189200
10.1074/jbc.M007773200
10.1038/ncb1780
10.1038/ncb1823
10.1038/ni.2157
10.1038/cdd.2011.29
10.1038/ncb1384
10.1007/s00535-013-0931-x
10.1074/jbc.M600620200
10.1038/nature05485
10.1074/jbc.M807574200
10.1126/scisignal.2005903
10.1073/pnas.1008203109
10.1084/jem.20080297
10.1126/science.278.5343.1612
10.18632/oncotarget.8182
10.1042/BJ20090616
10.1016/j.ceb.2004.02.005
10.4049/jimmunol.1900171
10.1093/emboj/cdg552
10.1039/C7AN00954B
10.4049/jimmunol.1300989
10.1111/gtc.12442
10.1038/ni1255
10.1084/jem.20132640
10.1016/j.cellsig.2010.11.017
10.3892/ijmm.2018.3881
10.1074/jbc.M109.076976
10.1084/jem.20122327
10.1016/S1097-2765(00)80244-0
10.1111/j.1600-065X.2011.01088.x
10.1038/ncb0805-758
10.1074/jbc.M800943200
ContentType Journal Article
Copyright Copyright © 2021 Xu and Lei.
Copyright © 2021 Xu and Lei 2021 Xu and Lei
Copyright_xml – notice: Copyright © 2021 Xu and Lei.
– notice: Copyright © 2021 Xu and Lei 2021 Xu and Lei
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2020.608976
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_cac275ec80694448b07573dbf84d5b9e
PMC7813674
33469458
10_3389_fimmu_2020_608976
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c531t-15d7fa6ea1fbde5a6d66a84aa4ef1043168d7ebf11f761b8aafe3a4287df1a4f3
IEDL.DBID M48
ISSN 1664-3224
IngestDate Wed Aug 27 01:29:10 EDT 2025
Thu Aug 21 18:18:15 EDT 2025
Fri Jul 11 15:31:34 EDT 2025
Thu Jan 02 22:56:52 EST 2025
Tue Jul 01 01:32:31 EDT 2025
Thu Apr 24 23:13:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords NF-κB
TABs
post-translational modifications
TAK1
inflammation
Language English
License Copyright © 2021 Xu and Lei.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-15d7fa6ea1fbde5a6d66a84aa4ef1043168d7ebf11f761b8aafe3a4287df1a4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to Inflammation, a section of the journal Frontiers in Immunology
Reviewed by: Neil J. Grimsey, University of Georgia, United States; Jae Hyuck Shim, University of Massachusetts Medical School, United States
Edited by: Massimo Gadina, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2020.608976
PMID 33469458
PQID 2479418995
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_cac275ec80694448b07573dbf84d5b9e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7813674
proquest_miscellaneous_2479418995
pubmed_primary_33469458
crossref_citationtrail_10_3389_fimmu_2020_608976
crossref_primary_10_3389_fimmu_2020_608976
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-05
PublicationDateYYYYMMDD 2021-01-05
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-05
  day: 05
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Inagaki (B78) 2008; 283
Viatour (B11) 2005; 30
Mittal (B127) 2006; 103
Wesche (B56) 1997; 272
Wang (B131) 2014; 385
Mendoza (B39) 2008; 409
Hsu (B68) 1996; 84
Ahmed (B99) 2011; 12
Tian (B54) 2007; 282
Yao (B125) 2014; 10
Shim (B20) 2005; 19
Cheung (B35) 2004; 378
Wang (B46) 2001; 412
Perry (B100) 1998; 18
Chen (B28) 2005; 7
Lei (B94) 2019; 203
Pathak (B133) 2012; 31
Zhang (B126) 2016; 291
Reiley (B115) 2007; 204
Wullaert (B14) 2011; 21
Yang (B112) 2015; 5
Wang (B123) 2017; 142
Chen (B8) 2012; 246
Yamamoto (B10) 2004; 29
Kim (B108) 2018; 113
Zhou (B119) 2020; 287
Medzhitov (B1) 2009; 9
Yamazaki (B65) 2009; 2
Hunter (B102) 2007; 28
Roh (B50) 2014; 49
Omori (B48) 2006; 281
Groves (B132) 2013; 18
Ajibade (B26) 2013; 34
Paquette (B129) 2012; 109
Kerscher (B130) 2006; 22
Dunne (B53) 2003; 2003
Tan (B107) 2015; 589
Zhang (B37) 2017; 474
Zheng (B82) 2013; 288
Chen (B47) 2015; 5
Theivanthiran (B103) 2015; 8
Xu (B9) 2009; 36
Yang (B104) 2017; 18
Kenny (B61) 2008; 43
Li (B67) 2011; 108
Hamidi (B97) 2012; 287
Prickett (B79) 2008; 283
Liu (B111) 2013; 210
Hu (B109) 2014; 111
Bertelsen (B77) 2007; 19
Takaesu (B34) 2000; 5
Yamaguchi (B16) 1995; 270
Ouyang (B76) 2014; 289
Verstrepen (B55) 2008; 65
Adhikari (B45) 2007; 26
Mukherjee (B128) 2006; 312
Dai (B23) 2012; 64
Biggar (B121) 2015; 16
Wolf (B88) 2011; 6
Carpenter (B60) 2009; 422
Baldwin (B7) 1996; 14
Totzke (B51) 2017; 24
Fan (B113) 2011; 18
Hotamisligil (B2) 2006; 444
Muzio (B58) 1997; 278
Nijman (B110) 2005; 123
Kobayashi (B86) 2005; 280
Sorrentino (B96) 2008; 10
Li (B71) 2006; 281
Sun (B91) 2004; 16
Matsuzawa-Ishimoto (B4) 2018; 36
Hayden (B12) 2008; 132
Silverman (B19) 2003; 278
Sakurai (B49) 2012; 33
Deng (B64) 2000; 103
Melino (B117) 2008; 15
Mukhopadhyay (B17) 2020; 39
Kishimoto (B38) 2000; 275
Hsu (B69) 1995; 81
Scholz (B74) 2010; 285
Ajibade (B32) 2012; 36
Shibuya (B33) 1996; 272
Zhao (B136) 2011; 8
Fan (B52) 2010; 285
Sakurai (B73) 2000; 474
Xiao (B80) 2014; 211
Kanayama (B41) 2004; 15
Takaesu (B21) 2003; 326
Sato (B135) 2005; 6
Komatsu (B30) 2002; 119
Wesche (B57) 1997; 7
Tao (B134) 2016; 7
Besse (B36) 2007; 282
Zhang (B124) 2011; 481
Israel (B44) 2010; 2
Ye (B83) 2019; 69
Fan (B98) 2011; 23
Shinohara (B25) 2016; 21
Hayden (B6) 2004; 18
Dou (B106) 2019; 203
Zhang (B118) 2018; 42
Mao (B92) 2011; 23
Shi (B105) 2008; 9
Xia (B62) 2009; 461
Lamb (B95) 2009; 10
Bernassola (B116) 2008; 14
Yang (B81) 2014; 192
Wang (B114) 2020; 21
Neubert (B29) 2011; 18
Zandi (B43) 1997; 91
Ninomiya-Tsuji (B27) 1999; 398
Medzhitov (B3) 2008; 454
Hanada (B84) 2001; 276
Wang (B122) 2019; 1068
Wu (B70) 2006; 8
Akira (B72) 2004; 4
Chang (B24) 2015; 12
Lamb (B93) 2013; 114
Singhirunnusorn (B75) 2005; 280
Ishitani (B40) 2003; 22
Xu (B90) 2009; 137
Oeckinghaus (B13) 2011; 12
Cheung (B42) 2003; 22
Liu (B89) 2009; 11
Tang (B31) 2008; 205
Kajino (B85) 2006; 281
Vidal (B18) 2001; 15
Sun (B22) 2012; 246
Yu (B63) 2008; 283
Charlaftis (B101) 2014; 33
Shibuya (B15) 1998; 17
Ghosh (B5) 1998; 16
Cao (B59) 1996; 271
Wu (B66) 2010; 40
Gu (B87) 2014; 192
Min (B120) 2017; 8
References_xml – volume: 91
  year: 1997
  ident: B43
  article-title: The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80406-7
– volume: 114
  year: 2013
  ident: B93
  article-title: Helicobacter pylori activates NF-kappaB by inducing Ubc13-mediated ubiquitination of lysine 158 of TAK1
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.24573
– volume: 409
  year: 2008
  ident: B39
  article-title: Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex
  publication-title: Biochem J
  doi: 10.1042/BJ20071149
– volume: 283
  year: 2008
  ident: B63
  article-title: Phosphorylation of Thr-178 and Thr-184 in the TAK1 T-loop is required for interleukin (IL)-1-mediated optimal NFkappaB and AP-1 activation as well as IL-6 gene expression
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M802825200
– volume: 21
  year: 2011
  ident: B14
  article-title: NF-kappaB in the regulation of epithelial homeostasis and inflammation
  publication-title: Cell Res
  doi: 10.1038/cr.2010.175
– volume: 326
  year: 2003
  ident: B21
  article-title: TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)01404-3
– volume: 34
  year: 2013
  ident: B26
  article-title: Cell type-specific function of TAK1 in innate immune signaling
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2013.03.007
– volume: 18
  year: 2017
  ident: B104
  article-title: The E3 ubiquitin ligase RNF114 and TAB1 degradation are required for maternal-to-zygotic transition
  publication-title: EMBO Rep
  doi: 10.15252/embr.201642573
– volume: 132
  year: 2008
  ident: B12
  article-title: Shared principles in NF-kappaB signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.020
– volume: 282
  year: 2007
  ident: B36
  article-title: TAK1-dependent signaling requires functional interaction with TAB2/TAB3
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M608867200
– volume: 385
  start-page: 69
  year: 2014
  ident: B131
  article-title: TAB2, an important upstream adaptor of interleukin-1 signaling pathway, is subject to SUMOylation
  publication-title: Mol Cell Biochem
  doi: 10.1007/s11010-013-1815-3
– volume: 19
  year: 2005
  ident: B20
  article-title: TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo
  publication-title: Genes Dev
  doi: 10.1101/gad.1360605
– volume: 275
  year: 2000
  ident: B38
  article-title: TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop
  publication-title: J Biol Chem
  doi: 10.1074/jbc.275.10.7359
– volume: 9
  year: 2008
  ident: B105
  article-title: TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation
  publication-title: Nat Immunol
  doi: 10.1038/ni1577
– volume: 281
  year: 2006
  ident: B85
  article-title: Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M608155200
– volume: 17
  year: 1998
  ident: B15
  article-title: Role of TAK1 and TAB1 in BMP signaling in early Xenopus development
  publication-title: EMBO J
  doi: 10.1093/emboj/17.4.1019
– volume: 288
  year: 2013
  ident: B82
  article-title: The dual-specificity phosphatase DUSP14 negatively regulates tumor necrosis factor- and interleukin-1-induced nuclear factor-kappaB activation by dephosphorylating the protein kinase TAK1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.412643
– volume: 282
  year: 2007
  ident: B54
  article-title: RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M701913200
– volume: 312
  year: 2006
  ident: B128
  article-title: Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation
  publication-title: Science
  doi: 10.1126/science.1126867
– volume: 16
  year: 1998
  ident: B5
  article-title: NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.16.1.225
– volume: 378
  start-page: 27
  year: 2004
  ident: B35
  article-title: TAB3, a new binding partner of the protein kinase TAK1
  publication-title: Biochem J
  doi: 10.1042/bj20031794
– volume: 15
  year: 2001
  ident: B18
  article-title: Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses
  publication-title: Genes Dev
  doi: 10.1101/gad.203301
– volume: 19
  year: 2007
  ident: B77
  article-title: TAB1 modulates IL-1alpha mediated cytokine secretion but is dispensable for TAK1 activation
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2006.08.017
– volume: 137
  year: 2009
  ident: B90
  article-title: Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.041
– volume: 15
  year: 2004
  ident: B41
  article-title: TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2004.08.008
– volume: 65
  year: 2008
  ident: B55
  article-title: TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-008-8064-8
– volume: 24
  start-page: 1029
  year: 2017
  ident: B51
  article-title: Takinib, a Selective TAK1 Inhibitor, Broadens the Therapeutic Efficacy of TNF-alpha Inhibition for Cancer and Autoimmune Disease
  publication-title: Cell Chem Biol
  doi: 10.1016/j.chembiol.2017.07.011
– volume: 36
  start-page: 73
  year: 2018
  ident: B4
  article-title: Autophagy and Inflammation
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-042617-053253
– volume: 203
  year: 2019
  ident: B94
  article-title: USP19 Inhibits TNF-alpha- and IL-1beta-Triggered NF-kappaB Activation by Deubiquitinating TAK1
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1900083
– volume: 18
  year: 2013
  ident: B132
  article-title: Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis
  publication-title: Cell Stress Chaperones
  doi: 10.1007/s12192-013-0426-y
– volume: 43
  year: 2008
  ident: B61
  article-title: Signalling adaptors used by Toll-like receptors: an update
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2008.07.010
– volume: 18
  year: 2011
  ident: B113
  article-title: USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2011.11
– volume: 40
  start-page: 75
  year: 2010
  ident: B66
  article-title: ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.09.010
– volume: 36
  year: 2009
  ident: B9
  article-title: A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.10.002
– volume: 123
  year: 2005
  ident: B110
  article-title: A genomic and functional inventory of deubiquitinating enzymes
  publication-title: Cell
  doi: 10.1016/j.cell.2005.11.007
– volume: 14
  start-page: 10
  year: 2008
  ident: B116
  article-title: The HECT family of E3 ubiquitin ligases: multiple players in cancer development
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.06.001
– volume: 15
  year: 2008
  ident: B117
  article-title: Itch: a HECT-type E3 ligase regulating immunity, skin and cancer
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2008.60
– volume: 16
  start-page: 5
  year: 2015
  ident: B121
  article-title: Non-histone protein methylation as a regulator of cellular signalling and function
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3915
– volume: 113
  start-page: 17
  year: 2018
  ident: B108
  article-title: TRIM38 regulates NF-kappaB activation through TAB2 degradation in osteoclast and osteoblast differentiation
  publication-title: Bone
  doi: 10.1016/j.bone.2018.05.009
– volume: 2
  start-page: ra66
  year: 2009
  ident: B65
  article-title: Two mechanistically and temporally distinct NF-kappaB activation pathways in IL-1 signaling
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2000387
– volume: 84
  start-page: 299
  year: 1996
  ident: B68
  article-title: TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80984-8
– volume: 192
  year: 2014
  ident: B87
  article-title: Phosphatase holoenzyme PP1/GADD34 negatively regulates TLR response by inhibiting TAK1 serine 412 phosphorylation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1302537
– volume: 64
  year: 2012
  ident: B23
  article-title: TAK1, more than just innate immunity
  publication-title: IUBMB Life
  doi: 10.1002/iub.1078
– volume: 8
  year: 2011
  ident: B136
  article-title: An essential role for TAK1 in the contact hypersensitivity response
  publication-title: Cell Mol Immunol
  doi: 10.1038/cmi.2011.11
– volume: 412
  year: 2001
  ident: B46
  article-title: TAK1 is a ubiquitin-dependent kinase of MKK and IKK
  publication-title: Nature
  doi: 10.1038/35085597
– volume: 474
  year: 2000
  ident: B73
  article-title: Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(00)01588-X
– volume: 8
  year: 2017
  ident: B120
  article-title: Ubiquitin-Specific Protease 14 Negatively Regulates Toll-Like Receptor 4-Mediated Signaling and Autophagy Induction by Inhibiting Ubiquitination of TAK1-Binding Protein 2 and Beclin 1
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.01827
– volume: 108
  year: 2011
  ident: B67
  article-title: Tripartite motif 8 (TRIM8) modulates TNFalpha- and IL-1beta-triggered NF-kappaB activation by targeting TAK1 for K63-linked polyubiquitination
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1110946108
– volume: 12
  start-page: 695
  year: 2011
  ident: B13
  article-title: Crosstalk in NF-kappaB signaling pathways
  publication-title: Nat Immunol
  doi: 10.1038/ni.2065
– volume: 9
  start-page: 692
  year: 2009
  ident: B1
  article-title: Transcriptional control of the inflammatory response
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2634
– volume: 272
  year: 1996
  ident: B33
  article-title: TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction
  publication-title: Science
  doi: 10.1126/science.272.5265.1179
– volume: 26
  year: 2007
  ident: B45
  article-title: Ubiquitin-mediated activation of TAK1 and IKK
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210413
– volume: 103
  year: 2000
  ident: B64
  article-title: Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00126-4
– volume: 287
  year: 2012
  ident: B97
  article-title: Polyubiquitination of transforming growth factor beta (TGFbeta)-associated kinase 1 mediates nuclear factor-kappaB activation in response to different inflammatory stimuli
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.285122
– volume: 272
  year: 1997
  ident: B56
  article-title: The interleukin-1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.12.7727
– volume: 461
  year: 2009
  ident: B62
  article-title: Direct activation of protein kinases by unanchored polyubiquitin chains
  publication-title: Nature
  doi: 10.1038/nature08247
– volume: 119
  year: 2002
  ident: B30
  article-title: Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis
  publication-title: Mech Dev
  doi: 10.1016/S0925-4773(02)00391-X
– volume: 474
  year: 2017
  ident: B37
  article-title: Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3
  publication-title: Biochem J
  doi: 10.1042/BCJ20170288
– volume: 39
  year: 2020
  ident: B17
  article-title: Multifaceted roles of TAK1 signaling in cancer
  publication-title: Oncogene
  doi: 10.1038/s41388-019-1088-8
– volume: 5
  start-page: 12738
  year: 2015
  ident: B112
  article-title: USP18 negatively regulates NF-kappaB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms
  publication-title: Sci Rep
  doi: 10.1038/srep12738
– volume: 285
  year: 2010
  ident: B74
  article-title: Autoactivation of transforming growth factor beta-activated kinase 1 is a sequential bimolecular process
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.093468
– volume: 33
  year: 2014
  ident: B101
  article-title: The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines
  publication-title: EMBO J
  doi: 10.15252/embj.201488351
– volume: 4
  start-page: 499
  year: 2004
  ident: B72
  article-title: Toll-like receptor signalling
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1391
– volume: 270
  year: 1995
  ident: B16
  article-title: Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction
  publication-title: Science
  doi: 10.1126/science.270.5244.2008
– volume: 2003
  start-page: re3
  year: 2003
  ident: B53
  article-title: The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense
  publication-title: Sci STKE
  doi: 10.1126/stke.2003.171.re3
– volume: 7
  year: 1997
  ident: B57
  article-title: MyD88: an adapter that recruits IRAK to the IL-1 receptor complex
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80402-1
– volume: 28
  year: 2007
  ident: B102
  article-title: The age of crosstalk: phosphorylation, ubiquitination, and beyond
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.11.019
– volume: 18
  year: 2004
  ident: B6
  article-title: Signaling to NF-kappaB
  publication-title: Genes Dev
  doi: 10.1101/gad.1228704
– volume: 287
  year: 2020
  ident: B119
  article-title: USP15 potentiates NF-kappaB activation by differentially stabilizing TAB2 and TAB3
  publication-title: FEBS J
  doi: 10.1111/febs.15202
– volume: 30
  start-page: 43
  year: 2005
  ident: B11
  article-title: Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2004.11.009
– volume: 454
  year: 2008
  ident: B3
  article-title: Origin and physiological roles of inflammation
  publication-title: Nature
  doi: 10.1038/nature07201
– volume: 69
  year: 2019
  ident: B83
  article-title: Dual-Specificity Phosphatase 26 Protects Against Nonalcoholic Fatty Liver Disease in Mice Through Transforming Growth Factor Beta-Activated Kinase 1 Suppression
  publication-title: Hepatology
  doi: 10.1002/hep.30485
– volume: 1068
  year: 2019
  ident: B122
  article-title: A new chromatographic approach to analyze methylproteome with enhanced lysine methylation identification performance
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2019.03.042
– volume: 10
  start-page: e1004522
  year: 2014
  ident: B125
  article-title: Structure and specificity of the bacterial cysteine methyltransferase effector NleE suggests a novel substrate in human DNA repair pathway
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004522
– volume: 14
  year: 1996
  ident: B7
  article-title: The NF-kappa B and I kappa B proteins: new discoveries and insights
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.14.1.649
– volume: 280
  year: 2005
  ident: B75
  article-title: Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-beta-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M407537200
– volume: 10
  year: 2009
  ident: B95
  article-title: Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination
  publication-title: EMBO Rep
  doi: 10.1038/embor.2009.210
– volume: 12
  year: 2015
  ident: B24
  article-title: Survival and maintenance of regulatory T cells require the kinase TAK1
  publication-title: Cell Mol Immunol
  doi: 10.1038/cmi.2015.27
– volume: 5
  start-page: 12300
  year: 2015
  ident: B47
  article-title: Polyubiquitination of Transforming Growth Factor beta-activated Kinase 1 (TAK1) at Lysine 562 Residue Regulates TLR4-mediated JNK and p38 MAPK Activation
  publication-title: Sci Rep
  doi: 10.1038/srep12300
– volume: 29
  year: 2004
  ident: B10
  article-title: IkappaB kinases: key regulators of the NF-kappaB pathway
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2003.12.003
– volume: 6
  start-page: e29256
  year: 2011
  ident: B88
  article-title: Identification and functional characterization of novel phosphorylation sites in TAK1-binding protein (TAB) 1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029256
– volume: 33
  year: 2012
  ident: B49
  article-title: Targeting of TAK1 in inflammatory disorders and cancer
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2012.06.007
– volume: 81
  start-page: 495
  year: 1995
  ident: B69
  article-title: The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90070-5
– volume: 481
  year: 2011
  ident: B124
  article-title: Cysteine methylation disrupts ubiquitin-chain sensing in NF-kappaB activation
  publication-title: Nature
  doi: 10.1038/nature10690
– volume: 22
  year: 2003
  ident: B40
  article-title: Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling
  publication-title: EMBO J
  doi: 10.1093/emboj/cdg605
– volume: 21
  start-page: e48035
  year: 2020
  ident: B114
  article-title: The p38-interacting protein p38IP suppresses TCR and LPS signaling by targeting TAK1
  publication-title: EMBO Rep
  doi: 10.15252/embr.201948035
– volume: 246
  start-page: 95
  year: 2012
  ident: B8
  article-title: Ubiquitination in signaling to and activation of IKK
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2012.01108.x
– volume: 278
  year: 2003
  ident: B19
  article-title: Immune activation of NF-kappaB and JNK requires Drosophila TAK1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M304802200
– volume: 18
  year: 1998
  ident: B100
  article-title: The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice
  publication-title: Nat Genet
  doi: 10.1038/ng0298-143
– volume: 22
  year: 2006
  ident: B130
  article-title: Modification of proteins by ubiquitin and ubiquitin-like proteins
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.22.010605.093503
– volume: 103
  year: 2006
  ident: B127
  article-title: Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0608995103
– volume: 111
  year: 2014
  ident: B109
  article-title: TRIM38 inhibits TNFalpha- and IL-1beta-triggered NF-kappaB activation by mediating lysosome-dependent degradation of TAB2/3
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1318227111
– volume: 31
  year: 2012
  ident: B133
  article-title: O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.8
– volume: 589
  year: 2015
  ident: B107
  article-title: RNF4 negatively regulates NF-kappaB signaling by down-regulating TAB2
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2015.07.051
– volume: 23
  year: 2011
  ident: B92
  article-title: TAK1 lysine 158 is required for TGF-beta-induced TRAF6-mediated Smad-independent IKK/NF-kappaB and JNK/AP-1 activation
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2010.09.006
– volume: 204
  year: 2007
  ident: B115
  article-title: Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses
  publication-title: J Exp Med
  doi: 10.1084/jem.20062694
– volume: 36
  start-page: 43
  year: 2012
  ident: B32
  article-title: TAK1 negatively regulates NF-kappaB and p38 MAP kinase activation in Gr-1+CD11b+ neutrophils
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.12.010
– volume: 291
  year: 2016
  ident: B126
  article-title: Identification of a Distinct Substrate-binding Domain in the Bacterial Cysteine Methyltransferase Effectors NleE and OspZ
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.734079
– volume: 2
  start-page: a000158
  year: 2010
  ident: B44
  article-title: The IKK complex, a central regulator of NF-kappaB activation
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a000158
– volume: 281
  year: 2006
  ident: B48
  article-title: TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M603384200
– volume: 398
  year: 1999
  ident: B27
  article-title: The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway
  publication-title: Nature
  doi: 10.1038/18465
– volume: 271
  year: 1996
  ident: B59
  article-title: IRAK: a kinase associated with the interleukin-1 receptor
  publication-title: Science
  doi: 10.1126/science.271.5252.1128
– volume: 289
  year: 2014
  ident: B76
  article-title: Transforming growth factor (TGF)-beta-activated kinase 1 (TAK1) activation requires phosphorylation of serine 412 by protein kinase A catalytic subunit alpha (PKACalpha) and X-linked protein kinase (PRKX)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.559963
– volume: 280
  year: 2005
  ident: B86
  article-title: Prostaglandin E2 enhances osteoclastic differentiation of precursor cells through protein kinase A-dependent phosphorylation of TAK1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M411189200
– volume: 276
  year: 2001
  ident: B84
  article-title: Regulation of the TAK1 signaling pathway by protein phosphatase 2C
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M007773200
– volume: 10
  year: 2008
  ident: B96
  article-title: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1780
– volume: 11
  year: 2009
  ident: B89
  article-title: Interaction between TAK1-TAB1-TAB2 and RCAN1-calcineurin defines a signalling nodal control point
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1823
– volume: 12
  year: 2011
  ident: B99
  article-title: The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation
  publication-title: Nat Immunol
  doi: 10.1038/ni.2157
– volume: 18
  year: 2011
  ident: B29
  article-title: Acute inhibition of TAK1 protects against neuronal death in cerebral ischemia
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2011.29
– volume: 8
  start-page: 398
  year: 2006
  ident: B70
  article-title: Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1384
– volume: 49
  year: 2014
  ident: B50
  article-title: TAK1 regulates hepatic cell survival and carcinogenesis
  publication-title: J Gastroenterol
  doi: 10.1007/s00535-013-0931-x
– volume: 281
  year: 2006
  ident: B71
  article-title: Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M600620200
– volume: 444
  year: 2006
  ident: B2
  article-title: Inflammation and metabolic disorders
  publication-title: Nature
  doi: 10.1038/nature05485
– volume: 283
  year: 2008
  ident: B78
  article-title: TAK1-binding protein 1, TAB1, mediates osmotic stress-induced TAK1 activation but is dispensable for TAK1-mediated cytokine signaling
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M807574200
– volume: 8
  start-page: ra22
  year: 2015
  ident: B103
  article-title: The E3 ubiquitin ligase Itch inhibits p38alpha signaling and skin inflammation through the ubiquitylation of Tab1
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2005903
– volume: 109
  year: 2012
  ident: B129
  article-title: Serine/threonine acetylation of TGFbeta-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1008203109
– volume: 205
  year: 2008
  ident: B31
  article-title: TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice
  publication-title: J Exp Med
  doi: 10.1084/jem.20080297
– volume: 278
  year: 1997
  ident: B58
  article-title: IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling
  publication-title: Science
  doi: 10.1126/science.278.5343.1612
– volume: 7
  year: 2016
  ident: B134
  article-title: TAB3 O-GlcNAcylation promotes metastasis of triple negative breast cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8182
– volume: 422
  start-page: 1
  year: 2009
  ident: B60
  article-title: Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins
  publication-title: Biochem J
  doi: 10.1042/BJ20090616
– volume: 16
  year: 2004
  ident: B91
  article-title: The novel functions of ubiquitination in signaling
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2004.02.005
– volume: 203
  year: 2019
  ident: B106
  article-title: Identification of the E3 Ligase TRIM29 as a Critical Checkpoint Regulator of NK Cell Functions
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1900171
– volume: 22
  year: 2003
  ident: B42
  article-title: Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha
  publication-title: EMBO J
  doi: 10.1093/emboj/cdg552
– volume: 142
  year: 2017
  ident: B123
  article-title: Strategies for large-scale analysis of non-histone protein methylation by LC-MS/MS
  publication-title: Analyst
  doi: 10.1039/C7AN00954B
– volume: 192
  year: 2014
  ident: B81
  article-title: Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1300989
– volume: 21
  year: 2016
  ident: B25
  article-title: TAK1 maintains the survival of immunoglobulin lambda-chain-positive B cells
  publication-title: Genes to Cells
  doi: 10.1111/gtc.12442
– volume: 6
  year: 2005
  ident: B135
  article-title: Essential function for the kinase TAK1 in innate and adaptive immune responses
  publication-title: Nat Immunol
  doi: 10.1038/ni1255
– volume: 211
  year: 2014
  ident: B80
  article-title: TPL2 mediates autoimmune inflammation through activation of the TAK1 axis of IL-17 signaling
  publication-title: J Exp Med
  doi: 10.1084/jem.20132640
– volume: 23
  year: 2011
  ident: B98
  article-title: TAK1 Lys-158 but not Lys-209 is required for IL-1beta-induced Lys63-linked TAK1 polyubiquitination and IKK/NF-kappaB activation
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2010.11.017
– volume: 42
  year: 2018
  ident: B118
  article-title: Effect of deubiquitinase USP8 on hypoxia/reoxygenationinduced inflammation by deubiquitination of TAK1 in renal tubular epithelial cells
  publication-title: Int J Mol Med
  doi: 10.3892/ijmm.2018.3881
– volume: 285
  year: 2010
  ident: B52
  article-title: Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NF-kappaB and JNK/AP-1 activation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.076976
– volume: 210
  year: 2013
  ident: B111
  article-title: USP18 inhibits NF-kappaB and NFAT activation during Th17 differentiation by deubiquitinating the TAK1-TAB1 complex
  publication-title: J Exp Med
  doi: 10.1084/jem.20122327
– volume: 5
  year: 2000
  ident: B34
  article-title: TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80244-0
– volume: 246
  year: 2012
  ident: B22
  article-title: The noncanonical NF-kappaB pathway
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2011.01088.x
– volume: 7
  year: 2005
  ident: B28
  article-title: Ubiquitin signalling in the NF-kappaB pathway
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb0805-758
– volume: 283
  year: 2008
  ident: B79
  article-title: TAB4 stimulates TAK1-TAB1 phosphorylation and binds polyubiquitin to direct signaling to NF-kappaB
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M800943200
SSID ssj0000493335
Score 2.6019964
SecondaryResourceType review_article
Snippet Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 608976
SubjectTerms Immunology
inflammation
NF-κB
post-translational modifications
TABs
TAK1
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEG_CS0HihBS2dvwKtxaxWkBwgK60N8uPMRRtU0RbCf49M3G2ahGCC5ccEjsZjceZ-ezxN4w9Q8gQjRDQAGKHRiaTmpCixYu2prPCmEjnnd9_0Kdn8u25Ot8r9UU5YYUeuCjuOPoojIJo6YQmYomAPs60KWQrkwod0N8Xfd4emPpa4t62bVXZxkQU1h3nxXK5RTwoJi_0xHbEMbLniAa-_j8Fmb_nSu45n5Mb7PoYNdbTIu1NdgX6W-xqqSP58zabzafveDOfztY1ze8L-PGyntbjwm39afEZO6_WqyXUi75-02e0guWwu15_LCmysL7Dzk5ez1-dNmNxhCbitNk0XCWTvQbPc0igvE5aeyu9l5A5MeZomwyEzHk2mgfrfYbWE0BKmXuZ27vsqF_1cJ-ObUfZJaGDVxMJRgahrMg8iI5nab2o2ORSUy6OzOFUwOLCIYIg5bpBuY6U64pyK_Z81-Vboc34W-MZqX_XkBivhxtoB260A_cvO6jY08vBczhDaNvD97Darp0gEn2OuFJV7F4ZzN2n2lbi65StmDkY5gNZDp_0iy8DC7exxHYnH_wP4R-ya4JyZWhpRz1iR5vvW3iMwc4mPBns-hcuKP2i
  priority: 102
  providerName: Directory of Open Access Journals
Title TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses
URI https://www.ncbi.nlm.nih.gov/pubmed/33469458
https://www.proquest.com/docview/2479418995
https://pubmed.ncbi.nlm.nih.gov/PMC7813674
https://doaj.org/article/cac275ec80694448b07573dbf84d5b9e
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGEBIvE99kwBQknpAyasdfRZpQixgDNB6glfpm2bE9OrXJaFpp--93l6QVRRUSL35IbCc53-Xu54_fEfIGIEOhGAtZAOyQca985nyhoZBa9TVTqsDzzuff5dmYf52IyR5Zp7fqBFjvhHaYT2q8mB1f_775AAZ_gogT_O27OJ3PVwD1WO9Y9jT41zvkLjgmhXZ63kX7l20wnOdNyk0qJc9AlXm7zrm7ly1P1RD674pC_95M-Yd3On1ADrqwMh20evCQ7IXyEbnXJpq8eUyGo8E3mo0GwzrFH8AsXL9PB2k3s5v-nF5A46qu5iGdlumXMoKazJvl9_RHu4c21E_I-PTT6ONZ1mVPyAqwq2VGhVfRymBpdD4IK72UVnNreYgUKXWk9iq4SGlUkjptbQy5RQTlI7U85k_JflmV4Tme6y543zPprOjxoLhjQrNIHevTyLVlCemtJWWKjlocM1zMDEAMFK5phGtQuKYVbkLebppctbwa_6o8RPFvKiIldnOhWlyYzsJMYQumRCg0HuUF0OkgGFK5d1FzL1w_JOT1evAMmBCui9gyVKvaMGTZpwA8RUKetYO5eVSec-hO6ISorWHeepftO-X0V0PTrTTS4fHD__nSF-Q-w00zOMcjXpL95WIVXkHUs3RHzWwBlJ8n9KjR61sbTQD8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TAK1-TABs+Complex%3A+A+Central+Signalosome+in+Inflammatory+Responses&rft.jtitle=Frontiers+in+immunology&rft.au=Xu%2C+Yan-Ran&rft.au=Lei%2C+Cao-Qi&rft.date=2021-01-05&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=11&rft_id=info:doi/10.3389%2Ffimmu.2020.608976&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2020_608976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon