Multi-objective decision model for green supply chain management

In this paper, a multi-objective linear programming model was developed which sought to simultaneously optimize total costs and total GHG emissions for the Thai Rubber supply chain. The model was solved by the ε -constraint method which computed the Pareto optimal solution. Each point in the Pareto...

Full description

Saved in:
Bibliographic Details
Published inCogent business & management Vol. 7; no. 1; pp. 1 - 33
Main Authors Balasubramanian, Sreejith, Shukla, Vinaya, Rosas, Jose-Saavedra
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 2020
Cogent
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a multi-objective linear programming model was developed which sought to simultaneously optimize total costs and total GHG emissions for the Thai Rubber supply chain. The model was solved by the ε -constraint method which computed the Pareto optimal solution. Each point in the Pareto set entailed a different design of quantity of rubber product flow between the supply chain entities and transport modes and routes. The result obtained show the trade-offs between costs and GHG emissions. It appears that improvements in cost reductions are only possible by compromising on and allowing for higher GHG emissions. From the Pareto set of solutions, each point is equally effective solution for achieving significant cost reductions without compromising too far on GHG emissions. Scenarios analysis were considered to examine the impact of transportation and distribution restructuring on the trade-off between GHG emissions and costs vis-à-vis the baseline model. Overall, the model developed in this research, together with its Pareto optimal solutions analysis, shows that it can be used as an effective tool to design a new and workable GSCM model for the Thai Rubber industry.
ISSN:2331-1975
2331-1975
DOI:10.1080/23311975.2020.1783177