Genome-scale CRISPRi screening: A powerful tool in engineering microbiology
Deciphering gene function is fundamental to engineering of microbiology. The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adapted for gene repression across a range of hosts, creating a versatile tool called CRISPR interference (CRISPRi) that enables genome-scal...
Saved in:
Published in | Engineering Microbiology Vol. 3; no. 3; p. 100089 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Deciphering gene function is fundamental to engineering of microbiology. The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adapted for gene repression across a range of hosts, creating a versatile tool called CRISPR interference (CRISPRi) that enables genome-scale analysis of gene function. This approach has yielded significant advances in the design of genome-scale CRISPRi libraries, as well as in applications of CRISPRi screening in medical and industrial microbiology. This review provides an overview of the recent progress made in pooled and arrayed CRISPRi screening in microorganisms and highlights representative studies that have employed this method. Additionally, the challenges associated with CRISPRi screening are discussed, and potential solutions for optimizing this strategy are proposed.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 2667-3703 2097-4280 2667-3703 |
DOI: | 10.1016/j.engmic.2023.100089 |