Interleukin-27 Ameliorates Renal Ischemia-Reperfusion Injury through Signal Transducers and Activators of Transcription 3 Signaling Pathway

Background: Acute kidney injury (AKI) is a clinical syndrome characterized by significant morbidity and a high death rate. Interleukin (IL)-27 is a newly described member of the IL-6/IL-12 heterodimeric cytokine family and displays anti-inflammatory and antiapoptotic properties. Objectives: To deter...

Full description

Saved in:
Bibliographic Details
Published inKidney & blood pressure research Vol. 44; no. 6; pp. 1453 - 1464
Main Authors Zhou, Peihui, Deng, Bo, Wu, Ming, Ding, Feng, Wang, Li
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.12.2019
Karger Publishers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background: Acute kidney injury (AKI) is a clinical syndrome characterized by significant morbidity and a high death rate. Interleukin (IL)-27 is a newly described member of the IL-6/IL-12 heterodimeric cytokine family and displays anti-inflammatory and antiapoptotic properties. Objectives: To determine the effect and mechanism of IL-27 in AKI. Method: We used a mouse model of renal ischemia/reperfusion (I/R) injury to investigate whether IL-27 has a therapeutic potential for the treatment of AKI. For the IL-27 administration group, IL-27 protein was injected 1 h before ischemia. Human proximal tubular epithelial cells were exposed to ischemia for 2 h and followed by 2 h of reperfusion (I2h+R2h treatment) used as an in vitro model to investigate the effect of IL-27. Results: Two IL-27 subunits, Epstein-Barr virus gene 3 and p28, were upregulated in kidneys 24 h after I/R. Renal expression of IL-27 receptor subunits (gp130 and WSX-1) was also increased. Treatment with IL-27 reduced structural/functional damages, ameliorated renal inflammation, inhibited the cleaved caspase-3 expression, upregulated antiapoptotic protein Bcl-2 and downregulated proapoptotic protein Bax in the kidneys of mice subjected to I/R. Meanwhile, the level of IL-27 receptor on renal tubular epithelial cells was increased after I2h+R2h treatment, and IL-27 administration suppressed I2h+R2h-induced epithelial cell apoptosis. Furthermore, IL-27 treatment led to activation of signal transducer and activator of transcription 3 (STAT3) both in vivo and in vitro, and IL-27-mediated protection against I2h+R2h injury was abolished by STAT3 inhibition. Conclusions: IL-27 protects against renal I/R injury by activating STAT3, suggesting that IL-27 may represent a novel strategy for the treatment of AKI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-4096
1423-0143
DOI:10.1159/000503923