Dysregulated MiR-3150a-3p Promotes Lumbar Intervertebral Disc Degeneration by Targeting Aggrecan

Abstract Background/Aims: Low back pain has become one of the most common musculoskeletal diseases in the world. Studies have shown that intervertebral disc degeneration (IDD) is an important factor leading to low back pain, but the mechanisms underlying IDD remain largely unknown. Research over the...

Full description

Saved in:
Bibliographic Details
Published inCellular physiology and biochemistry Vol. 45; no. 6; pp. 2506 - 2515
Main Authors Zhang, Bin, Guo, Wei, Sun, Chao, Duan, Hui-Quan, Yu, Bing-Bing, Mu, Kun, Guan, Yue-Yan, Li, Yan, Liu, Shen, Liu, Yang, Ban, De-Xiang, Ruan, Wen-Dong, Kong, Xiao-Hong, Xing, Cong, Ning, Guang-Zhi, Feng, Shi-Qing
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.04.2018
Cell Physiol Biochem Press GmbH & Co KG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Background/Aims: Low back pain has become one of the most common musculoskeletal diseases in the world. Studies have shown that intervertebral disc degeneration (IDD) is an important factor leading to low back pain, but the mechanisms underlying IDD remain largely unknown. Research over the past decade has suggested critical roles for microRNAs (miRNAs) in natural growth and disease progression. However, it remains poorly understood whether circular RNAs participate in IDD. Methods: Clinical IDD samples were collected from 20 patients who underwent discectomy. Weighted gene co-expression network analysis was used to identify the co-expression miRNA network modules (highly co-expressed clusters of miRNAs) that were associated with IDD grade. Results: miR-3150a-3p was the most significantly up-regulated miRNA in module “Blue.” Notably, aggrecan (ACAN) was identified as a direct target gene of miR-3150a-3p and ACAN expression was regulated by miR-3150a-3p. Overexpression of miR-3150a-3p decreased ACAN expression in nucleus pulposus cells, whereas inhibition of miR-3150a-3p increased ACAN expression. In addition, ACAN expression was negatively correlated with IDD grade. Conclusion: Our study suggests that the reduction of ACAN expression induced by the upregulation of miR-3150a-3p might participate in the development of IDD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1015-8987
1421-9778
1421-9778
DOI:10.1159/000488269