Structural,Optical,Antibacterial and Antifungal Properties of Zirconia Nanoparticles by Biobased Protocol

Biological entities and inorganic materials have been in constant touch with each other ever since inception of life on earth.This method has lots of merits such as not requiring complex procedures,template supporting etc.In this work,Aloe vera plant mediated synthesis of tetragonal zirconia nanopar...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science & technology Vol. 30; no. 8; pp. 782 - 790
Main Authors Gowri, S., Rajiv Gandhi, R., Sundrarajan, M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Biological entities and inorganic materials have been in constant touch with each other ever since inception of life on earth.This method has lots of merits such as not requiring complex procedures,template supporting etc.In this work,Aloe vera plant mediated synthesis of tetragonal zirconia nanoparticles has been performed and thermogravimetric and differential thermal analysis(TG/DTA),X-ray diffraction(XRD),scanning electron microscopy(SEM) with energy dispersive X-ray spectroscopy(EDX),atomic force microscopy(AFM),ultraviolet—visible(UV—VIS) technique and Fourier transform infrared spectroscopy(FTIR) have been provided for characterizing the nanoparticles.Formation of homogeneously distributed spherical zirconia nanoparticles of 50—100 nm in size is predicted.The antimicrobial and antifungal properties are also investigated for synthesis of zirconia nanoparticles and the treated cotton by agar diffusion method against Staphylococcus aureus and Escherichia coli bacterial pathogens and fungal strains Candida albicans and Aspergillus niger,respectively.
Bibliography:Biological entities and inorganic materials have been in constant touch with each other ever since inception of life on earth.This method has lots of merits such as not requiring complex procedures,template supporting etc.In this work,Aloe vera plant mediated synthesis of tetragonal zirconia nanoparticles has been performed and thermogravimetric and differential thermal analysis(TG/DTA),X-ray diffraction(XRD),scanning electron microscopy(SEM) with energy dispersive X-ray spectroscopy(EDX),atomic force microscopy(AFM),ultraviolet—visible(UV—VIS) technique and Fourier transform infrared spectroscopy(FTIR) have been provided for characterizing the nanoparticles.Formation of homogeneously distributed spherical zirconia nanoparticles of 50—100 nm in size is predicted.The antimicrobial and antifungal properties are also investigated for synthesis of zirconia nanoparticles and the treated cotton by agar diffusion method against Staphylococcus aureus and Escherichia coli bacterial pathogens and fungal strains Candida albicans and Aspergillus niger,respectively.
21-1315/TG
Zirconia nanoparticles;Biosynthesis;Aloe vera;Cotton;Antibacterial property
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1005-0302
1941-1162
DOI:10.1016/j.jmst.2014.03.002