Clinical utility of FDG-PET for the clinical diagnosis in MCI
Purpose We aim to report the quality of accuracy studies investigating the utility of [ 18 F]fluorodeoxyglucose (FDG)-PET in supporting the diagnosis of prodromal Alzheimer’s Disease (AD), frontotemporal lobar degeneration (FTLD) and prodromal dementia with Lewy bodies (DLB) in mild cognitive impair...
Saved in:
Published in | European journal of nuclear medicine and molecular imaging Vol. 45; no. 9; pp. 1497 - 1508 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Purpose
We aim to report the quality of accuracy studies investigating the utility of [
18
F]fluorodeoxyglucose (FDG)-PET in supporting the diagnosis of prodromal Alzheimer’s Disease (AD), frontotemporal lobar degeneration (FTLD) and prodromal dementia with Lewy bodies (DLB) in mild cognitive impairment (MCI) subjects, and the corresponding recommendations made by a panel of experts.
Methods
Seven panellist, four from the European Association of Nuclear Medicine, and three from the European Academy of Neurology, produced recommendations taking into consideration the incremental value of FDG-PET, as added on clinical-neuropsychological examination, to ascertain the aetiology of MCI (AD, FTLD or DLB). A literature search using harmonized population, intervention, comparison, and outcome (PICO) strings was performed, and an evidence assessment consistent with the European Federation of Neurological Societies guidance was provided. The consensual recommendation was achieved based on Delphi rounds.
Results
Fifty-four papers reported the comparison of interest. The selected papers allowed the identification of FDG patterns that characterized MCI due to AD, FTLD and DLB. While clinical outcome studies supporting the diagnosis of MCI due to AD showed varying accuracies (ranging from 58 to 100%) and varying areas under the receiver-operator characteristic curves (0.66 to 0.97), no respective data were identified for MCI due to FTLD or for MCI due to DLB. However, the high negative predictive value of FDG-PET and the existence of different disease-specific patterns of hypometabolism support the consensus recommendations for the clinical use of this imaging technique in MCI subjects.
Conclusions
FDG-PET has clinical utility on a fair level of evidence in detecting MCI due to AD. Although promising also in detecting MCI due to FTLD and MCI due to DLB, more research is needed to ultimately judge the clinical utility of FDG-PET in these entities. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1619-7070 1619-7089 |
DOI: | 10.1007/s00259-018-4039-7 |