Potential Therapeutic Action of Adiponectin in Duchenne Muscular Dystrophy

Adiponectin (ApN) is a hormone that exhibits anti-inflammatory effects on skeletal muscle exposed to acute and chronic inflammation. We have previously tested the implication of ApN in Duchenne muscular dystrophy (DMD) using mdx mice, a model of DMD, and by generating transgenic mdx mice overexpress...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of pathology Vol. 187; no. 7; pp. 1577 - 1585
Main Authors Abou-Samra, Michel, Boursereau, Raphaël, Lecompte, Sophie, Noel, Laurence, Brichard, Sonia M
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Adiponectin (ApN) is a hormone that exhibits anti-inflammatory effects on skeletal muscle exposed to acute and chronic inflammation. We have previously tested the implication of ApN in Duchenne muscular dystrophy (DMD) using mdx mice, a model of DMD, and by generating transgenic mdx mice overexpressing ApN. We showed that ApN can act as a preventive agent and delay disease progression by reducing muscle inflammation/injury and improving force/myogenesis. Herein, we took an opposite approach and crossed mdx mice with ApN knockout mice, to obtain mdx mice with ApN depletion. The aims were to test whether ApN deficiency could worsen the mdx phenotype and whether ApN supplementation can reverse several muscle abnormalities once the disease is settled. mdx-knocout mice exhibited lower muscle force/endurance as well as increased muscle damage when compared to regular mdx mice. Local administration of the ApN gene significantly reduced the expression of several oxidative stress/inflammatory markers and increased the expression of myogenic markers in the skeletal muscle. Finally, the presence of ApN markedly reduced the activity of NF-κB, a key player in muscle inflammation and myogenesis. ApN proves to be a powerful protector of the skeletal muscle capable of reversing the disease progression, thus making it a potential therapeutic agent for DMD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-9440
1525-2191
DOI:10.1016/j.ajpath.2017.02.018