Persistent 3′-phosphate termini and increased cytotoxicity of radiomimetic DNA double-strand breaks in cells lacking polynucleotide kinase/phosphatase despite presence of an alternative 3′-phosphatase

Polynucleotide kinase/phosphatase (PNKP) has been implicated in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). To assess the consequences of PNKP deficiency for NHEJ of 3′-phosphate-ended DSBs, PNKP-deficient derivatives of HCT116 and of HeLa cells were generated using CRISPR/...

Full description

Saved in:
Bibliographic Details
Published inDNA repair Vol. 68; pp. 12 - 24
Main Authors Chalasani, Sri Lakshmi, Kawale, Ajinkya S., Akopiants, Konstantin, Yu, Yaping, Fanta, Mesfin, Weinfeld, Michael, Povirk, Lawrence F.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polynucleotide kinase/phosphatase (PNKP) has been implicated in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). To assess the consequences of PNKP deficiency for NHEJ of 3′-phosphate-ended DSBs, PNKP-deficient derivatives of HCT116 and of HeLa cells were generated using CRISPR/CAS9. For both cell lines, PNKP deficiency conferred sensitivity to ionizing radiation as well as to neocarzinostatin (NCS), which specifically induces DSBs bearing protruding 3′-phosphate termini. Moreover, NCS-induced DSBs, detected as 53BP1 foci, were more persistent in PNKP −/− HCT116 cells compared to their wild-type (WT) counterparts. Surprisingly, PNKP-deficient whole-cell and nuclear extracts were biochemically competent in removing both protruding and recessed 3′-phosphates from synthetic DSB substrates, albeit much less efficiently than WT extracts, suggesting an alternative 3′-phosphatase. Measurements by ligation-mediated PCR showed that PNKP-deficient HeLa cells contained significantly more 3′-phosphate-terminated and fewer 3′-hydroxyl-terminated DSBs than parental cells 5–15 min after NCS treatment, but this difference disappeared by 1 h. These results suggest that, despite presence of an alternative 3′-phosphatase, loss of PNKP significantly sensitizes cells to 3′-phosphate-terminated DSBs, due to a 3′-dephosphorylation defect.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1568-7864
1568-7856
DOI:10.1016/j.dnarep.2018.05.002