Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis
The molecular pathways involved in the differentiation of hematopoietic progenitors are unknown. Here we report that chemokine-mediated interactions of megakaryocyte progenitors with sinusoidal bone marrow endothelial cells (BMECs) promote thrombopoietin (TPO)-independent platelet production. Megaka...
Saved in:
Published in | Nature medicine Vol. 10; no. 1; pp. 64 - 71 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Nature Publishing Group
01.01.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The molecular pathways involved in the differentiation of hematopoietic progenitors are unknown. Here we report that chemokine-mediated interactions of megakaryocyte progenitors with sinusoidal bone marrow endothelial cells (BMECs) promote thrombopoietin (TPO)-independent platelet production. Megakaryocyte-active cytokines, including interleukin-6 (IL-6) and IL-11, did not induce platelet production in thrombocytopenic, TPO-deficient (Thpo(-/-)) or TPO receptor-deficient (Mpl(-/-)) mice. In contrast, megakaryocyte-active chemokines, including stromal-derived factor-1 (SDF-1) and fibroblast growth factor-4 (FGF-4), restored thrombopoiesis in Thpo(-/-) and Mpl(-/-) mice. FGF-4 and SDF-1 enhanced vascular cell adhesion molecule-1 (VCAM-1)- and very late antigen-4 (VLA-4)-mediated localization of CXCR4(+) megakaryocyte progenitors to the vascular niche, promoting survival, maturation and platelet release. Disruption of the vascular niche or interference with megakaryocyte motility inhibited thrombopoiesis under physiological conditions and after myelosuppression. SDF-1 and FGF-4 diminished thrombocytopenia after myelosuppression. These data suggest that TPO supports progenitor cell expansion, whereas chemokine-mediated interaction of progenitors with the bone marrow vascular niche allows the progenitors to relocate to a microenvironment that is permissive and instructive for megakaryocyte maturation and thrombopoiesis. Progenitor-active chemokines offer a new strategy to restore hematopoiesis in a clinical setting. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1078-8956 1546-170X |
DOI: | 10.1038/nm973 |