Longitudinal Macular Structure-Function Relationships in Glaucoma and Their Sources of Variability
To review central structure-function (SF) relationships in glaucoma; to compare contributions of within-session and between-session variability to total variability of macular optical coherence tomography (OCT) thickness measurements; and to test the hypothesis that longitudinal within-eye variabili...
Saved in:
Published in | American journal of ophthalmology Vol. 207; pp. 18 - 36 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To review central structure-function (SF) relationships in glaucoma; to compare contributions of within-session and between-session variability to total variability of macular optical coherence tomography (OCT) thickness measurements; and to test the hypothesis that longitudinal within-eye variability of central SF relationships is smaller than between-individual variability.
We reviewed the pertinent literature on central SF relationships in glaucoma. Thirty-eight eyes (20 normal or glaucoma subjects) had ×3 macular images per session over 3 sessions, and superpixels thickness measurements for ganglion cell layer (GCL), ganglion cell/inner plexiform layer (GCIPL), ganglion cell complex (GCC), and full macular thickness (FMT) were exported. Linear mixed models were used for estimating contributions of between- and within-session variability to total thickness variability. One hundred twenty eyes with ≥3 10° visual fields (VFs)/OCT images were enrolled for the longitudinal study. We investigated within-eye longitudinal SF relationships (GCIPL thickness vs VF total deviations) with a change-point regression model and compared within-eye to between-individual variabilities with components-of-variance models.
In the cross-sectional study, the between-session component contributed 8%, 11%, 11%, and 36% of total variability for GCL, GCIPL, GCC, and FMT, respectively. In the longitudinal study, between-individual variability explained 78%, 77%, and 67% of total SF variability at 3.4°, 5.6°, and 6.8° eccentricities, respectively (P < .05). SF relationships remained stable over time within individual eyes.
Within-session variability accounts for most of macular thickness variability over time. Longitudinal within-eye SF variability is smaller than between-individual variability. Study of within-eye SF relationships could help clinicians better understand SF linking in glaucoma and help refine progression algorithms. NOTE: Publication of this article is sponsored by the American Ophthalmological Society. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0002-9394 1879-1891 1879-1891 |
DOI: | 10.1016/j.ajo.2019.04.034 |