MiR-29b Downregulation Induces Phenotypic Modulation of Vascular Smooth Muscle Cells: Implication for Intracranial Aneurysm Formation and Progression to Rupture

Background/Aims: Our previous microarray results identified numerous microRNAs (miRNAs), including miR-29b, that were differentially expressed in the serum of intracranial aneurysm (IA) patients. The current study aimed to investigate whether miR-29b downregulation in IA could promote the phenotypic...

Full description

Saved in:
Bibliographic Details
Published inCellular physiology and biochemistry Vol. 41; no. 2; pp. 510 - 518
Main Authors Sun, Liqian, Zhao, Manman, Zhang, Jingbo, Lv, Ming, Li, Youxiang, Yang, Xinjian, Liu, Aihua, Wu, Zhongxue
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.01.2017
Cell Physiol Biochem Press GmbH & Co KG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background/Aims: Our previous microarray results identified numerous microRNAs (miRNAs), including miR-29b, that were differentially expressed in the serum of intracranial aneurysm (IA) patients. The current study aimed to investigate whether miR-29b downregulation in IA could promote the phenotypic modulation of vascular smooth muscle cells (VSMCs) involved in the pathogenesis of aneurysm by activating ATG14-mediated autophagy. Methods: First, the levels of miR-29b and autophagy related genes (ATGs) between IA patients and normal subjects were compared. Next, we modified the level of miR-29b via lentivirus particles in the VSMCs and examined the effects of miR-29b on proliferation, migration, and phenotypic modulation of VSMCs from a contractile phenotype to a synthetic phenotype, as well as the levels of autophagy. Finally, the binding of miR-29b to the 3’UTR of ATG14 mRNA and its effects on ATG14 expression were analysed by a luciferase reporter assay and Western blot, respectively. Results: The level of miR-29b was decreased, and autophagy markers were increased in the IA patients compared to that of the normal subjects. Knockdown of miR-29b significantly promoted VSMCs proliferation and migration and, more importantly, induced the phenotypic modulation associated with autophagy activation, whereas miR-29b overexpression showed the opposite effects. The luciferase reporter assay demonstrated that ATG14 was a functional target gene of miR-29b. Notably, knockdown of ATG14 by siRNA apparently abrogated miR-29b inhibition-mediated phenotypic modulation. Conclusion: Downregulation of miR-29b induced VSMCs phenotypic modulation by directly activating ATG14-mediated autophagy, which is associated with the formation, growth and rupture of IAs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1015-8987
1421-9778
1421-9778
DOI:10.1159/000456887