A bilevel model for electricity retailers' participation in a demand response market environment

Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small c...

Full description

Saved in:
Bibliographic Details
Published inEnergy economics Vol. 36; pp. 182 - 197
Main Authors Zugno, Marco, Morales, Juan Miguel, Pinson, Pierre, Madsen, Henrik
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small consumers are believed to have significant potential for peak-shaving and load-shifting, thus relieving the power system while reducing costs and risk for energy retailers. This paper proposes a game theoretical model accounting for the Stackelberg relationship between retailers (leaders) and consumers (followers) in a dynamic price environment. Both players in the game solve an economic optimisation problem subject to stochasticity in prices, weather-related variables and must-serve load. The model allows the determination of the dynamic price-signal delivering maximum retailer profit, and the optimal load pattern for consumers under this pricing. The bilevel programme is reformulated as a single-level MILP, which can be solved using commercial off-the-shelf optimisation software. In an illustrative example, we simulate and compare the dynamic pricing scheme with fixed and time-of-use pricing. We find that the dynamic pricing scheme is the most effective in achieving load-shifting, thus reducing retailer costs for energy procurement and regulation in the wholesale market. Additionally, the redistribution of the saved costs between retailers and consumers is investigated, showing that real-time pricing is less convenient than fixed and time-of-use price for consumers. This implies that careful design of the retail market is needed. Finally, we carry out a sensitivity analysis to analyse the effect of different levels of consumer flexibility. ► We model the game between electricity retailers and consumers under dynamic pricing. ► The retailer cuts procurement costs by shifting demand in time via price-incentive. ► Imbalance costs for the retailer taper off when using real-time pricing. ► The additional welfare can be distributed unfairly between retailers and consumers. ► Real-time pricing encourages consumers to increase their flexibility.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0140-9883
1873-6181
DOI:10.1016/j.eneco.2012.12.010