The Combination of Structure Prediction and Experiment for the Exploration of Alkali‐Earth Metal‐Contained Chalcopyrite‐Like IR Nonlinear Optical Material
Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO mat...
Saved in:
Published in | Advanced science Vol. 9; no. 15; pp. e2106120 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.05.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa2Se4, has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa2Se4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy.
The first defect‐chalcopyrite‐like alkali‐earth metal selenide IR NLO material DCL‐MgGa2Se4 with balanced SHG response and band gap is rationally designed and fabricated by a calculation and experiment combined strategy. |
---|---|
AbstractList | Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite-like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect-CL (DCL) alkali-earth metal (AEM) selenide IR NLO material, DCL-MgGa
Se
, has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe
effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS
(AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type-I phase-matching (PM) behavior and a wide IR transparent range. The results indicate that DCL-MgGa
Se
is a promising mid-to-far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy. Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa2Se4, has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa2Se4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy. The first defect‐chalcopyrite‐like alkali‐earth metal selenide IR NLO material DCL‐MgGa2Se4 with balanced SHG response and band gap is rationally designed and fabricated by a calculation and experiment combined strategy. Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa2Se4, has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa2Se4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy. Abstract Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa 2 Se 4 , has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe 4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS 2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa 2 Se 4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy. Abstract Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa2Se4, has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa2Se4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy. Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa 2 Se 4 , has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe 4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS 2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa 2 Se 4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy. The first defect‐chalcopyrite‐like alkali‐earth metal selenide IR NLO material DCL‐MgGa 2 Se 4 with balanced SHG response and band gap is rationally designed and fabricated by a calculation and experiment combined strategy. |
Author | Wang, Peng Li, Junjie Xie, Congwei Yang, Zhihua Chu, Yu Tudi, Abudukadi Pan, Shilie |
AuthorAffiliation | 3 Skolkovo Institute of Science and Technology Skolkovo Innovation Center 3 Nobel Street Moscow 143026 Russian Federation 1 CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices Urumqi 830011 P. R. China 2 Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China |
AuthorAffiliation_xml | – name: 3 Skolkovo Institute of Science and Technology Skolkovo Innovation Center 3 Nobel Street Moscow 143026 Russian Federation – name: 1 CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices Urumqi 830011 P. R. China – name: 2 Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China |
Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0003-4763-1603 surname: Wang fullname: Wang, Peng organization: Xinjiang Key Laboratory of Electronic Information Materials and Devices – sequence: 2 givenname: Yu surname: Chu fullname: Chu, Yu organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Abudukadi surname: Tudi fullname: Tudi, Abudukadi organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Congwei surname: Xie fullname: Xie, Congwei organization: Skolkovo Innovation Center – sequence: 5 givenname: Zhihua orcidid: 0000-0001-9214-3612 surname: Yang fullname: Yang, Zhihua organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Shilie orcidid: 0000-0003-4521-4507 surname: Pan fullname: Pan, Shilie email: slpan@ms.xjb.ac.cn organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Junjie surname: Li fullname: Li, Junjie email: lijunjie@ms.xjb.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35404514$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEUhUeoiJbSLUtkiQ2bBP_bs0GqQoBIKUW0sLU8Hk_j1LFTj6eQHY_AI_BsPAluU6KWDSuPz_3u8dyr87TaCzHYqnqO4BhBiF_r9rofY4gR5AjDR9UBRrUcEUnp3r3v_eqo75cQQsSIoEg-qfYJo5AyRA-qX-cLCyZx1bigs4sBxA6c5TSYPCQLPiXbOnOr69CC6fe1TW5lQwZdTCCX1iL5mHatx_5Se_f7x8-pTnkBTmzWvtwmMWTtgm3BZKG9ietNctmWwtxdWjD7DD7G4EtdJ3C6zs5oD050Lm9p_6x63Gnf26O787D68m56Pvkwmp--n02O5yPDcE1HxnDBOaQEGmlEV2vIWdEkQRQiwzvKWsmYFLjsDbdScI0bypiW1FLeIU0Oq9nWt416qdZlTJ02KmqnboWYLlQZyRlvFa4bSpBpG0EIZRA2ggrSMNsi3jVGyuL1Zuu1HpqVbU1ZWNL-genDSnALdRGvVY0IlDUvBq_uDFK8Gmyf1cr1xnqvg41DrzCnNWao5qKgL_9Bl3FIoayqUFwKSGQNCzXeUibFvk-22_0MguomS-omS2qXpdLw4v4IO_xvcgpAt8A35-3mP3bq-O3XMyIFJX8AN9fauA |
CitedBy_id | crossref_primary_10_1002_smll_202305074 crossref_primary_10_1039_D3DT02515B crossref_primary_10_1039_D4CP01302F crossref_primary_10_1021_acs_inorgchem_2c01828 crossref_primary_10_1039_D4DT01536C crossref_primary_10_1515_znb_2023_0098 crossref_primary_10_1002_chem_202202063 crossref_primary_10_1002_chem_202203597 crossref_primary_10_1002_adom_202400084 crossref_primary_10_1016_j_cjsc_2023_100033 crossref_primary_10_1016_j_ccr_2023_215617 crossref_primary_10_1021_jacs_2c08318 crossref_primary_10_1007_s12274_023_5964_8 crossref_primary_10_1021_acs_chemmater_4c00310 crossref_primary_10_1039_D3CP01081C crossref_primary_10_1039_D4SC00334A crossref_primary_10_1021_acs_inorgchem_2c01540 crossref_primary_10_1016_j_cej_2023_143911 crossref_primary_10_1002_adom_202300736 crossref_primary_10_1021_acsmaterialslett_2c00409 crossref_primary_10_1021_acs_chemmater_3c01493 crossref_primary_10_1039_D3CS00691C crossref_primary_10_1007_s40843_023_2592_x crossref_primary_10_1002_ange_202307895 crossref_primary_10_1039_D4QI00293H crossref_primary_10_1021_acs_inorgchem_3c01700 crossref_primary_10_1002_adom_202202147 crossref_primary_10_1002_smll_202302819 crossref_primary_10_1021_acs_chemmater_3c00291 crossref_primary_10_1039_D4RA01791A crossref_primary_10_1038_s41467_024_47209_4 crossref_primary_10_1142_S0217984924503743 crossref_primary_10_1002_smll_202308806 crossref_primary_10_1002_adom_202300256 crossref_primary_10_1039_D3QI01937C crossref_primary_10_1002_adfm_202314933 crossref_primary_10_1021_acs_chemrev_2c00422 crossref_primary_10_1002_anie_202307895 crossref_primary_10_1039_D3DT01496G crossref_primary_10_1039_D3QI00505D crossref_primary_10_1007_s11426_022_1452_8 crossref_primary_10_1021_acs_chemrev_1c01067 crossref_primary_10_1039_D3DT03637E crossref_primary_10_1016_j_mtphys_2023_101166 crossref_primary_10_3390_nano12234169 crossref_primary_10_1021_acs_inorgchem_3c03695 crossref_primary_10_1039_D2MH01200F crossref_primary_10_1016_j_matt_2023_02_005 crossref_primary_10_1039_D3DT02807K crossref_primary_10_1039_D3DT02952B crossref_primary_10_1002_adom_202401100 crossref_primary_10_1016_j_jallcom_2023_172382 crossref_primary_10_1039_D3QI01144E |
Cites_doi | 10.1016/j.ccr.2021.214328 10.1109/JSTQE.2014.2378595 10.1021/jacs.7b05943 10.1103/PhysRevB.39.10429 10.1016/0022-4596(87)90185-X 10.1002/anie.201708231 10.1016/j.optmat.2017.07.020 10.1016/j.mtphys.2021.100432 10.1016/j.cpc.2012.12.009 10.1103/PhysRevB.38.9469 10.1021/acs.chemmater.6b05026 10.1039/D1TC05436H 10.1016/j.cpc.2006.07.020 10.1134/S1063783420080120 10.1021/acs.chemmater.1c01369 10.1002/zaac.19532710307 10.1016/0038-1098(94)90300-X 10.1021/ic1006742 10.1016/S1350-4495(97)00017-0 10.1103/PhysRevB.37.8958 10.1103/PhysRevB.57.3905 10.1016/j.jallcom.2021.163384 10.1002/anie.202107613 10.1039/D1TC04717E 10.1103/PhysRevB.52.14636 10.1002/chem.202005404 10.1016/j.mattod.2019.10.005 10.1002/anie.202010319 10.1021/acs.chemmater.9b01023 10.1021/acs.analchem.0c01158 10.1021/acs.chemmater.0c01971 10.1039/D0CC05132B 10.1002/anie.201712168 10.1016/0022-3697(72)90032-7 10.1002/anie.201802058 10.1002/adom.202101729 10.1107/S0021889802022112 10.1021/ja111083x 10.1039/b511119f 10.1021/cm401737s 10.1103/PhysRevB.47.4174 10.1021/acs.chemmater.0c02929 10.1021/ar1001318 10.1021/ja400500m 10.1016/j.ccr.2016.11.012 10.1103/PhysRevB.86.014109 10.1002/anie.202215827 10.1063/1.4906427 10.1002/zaac.19552790502 10.1063/1.4812323 10.1039/C5DT03215F 10.1103/PhysRevB.54.11169 10.1016/j.ccr.2021.214154 10.1016/j.ensm.2021.10.029 10.1016/j.ccr.2018.09.002 10.1002/adom.202001856 10.1063/1.1656857 10.1021/acsami.1c06933 10.1039/c2dt12493a 10.1021/cg8010579 10.1021/acs.inorgchem.5b01859 10.1021/acs.accounts.7b00033 10.1021/acs.chemmater.1c01982 10.1103/PhysRevB.40.1329 10.1063/1.2210932 10.1002/anie.202002291 10.1039/C7DT90127E 10.1021/acs.chemrev.0c00796 10.1021/jacs.6b03734 10.1021/jacs.1c03930 10.1039/C7QI00004A 10.1016/j.ccr.2019.213150 10.1016/j.ccr.2015.01.005 10.1021/acs.cgd.7b00214 10.1103/PhysRevLett.77.3865 10.1524/zkri.220.5.567.65075 10.1038/s41578-019-0101-8 10.1021/acs.cgd.0c01234 10.1016/j.mtphys.2021.100569 10.1107/S0108768185002063 10.3390/ma14206166 10.1039/C5DT01635E 10.1088/0268-1242/31/12/123001 10.1021/acs.chemmater.0c02583 10.1109/JQE.1976.1069169 10.1021/acsami.0c15728 10.1364/AO.14.001380 10.1002/anie.201700540 10.1021/jacs.8b10009 10.1021/ic300373z 10.1021/acs.inorgchem.8b01174 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202106120 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Free Content PubMed CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library (ProQuest Database) Science Journals (ProQuest Database) Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_29b431cdb7334500b7473b5ed16fbc88 10_1002_advs_202106120 35404514 ADVS3874 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Xinjiang Key Laboratory of Electronic Information Materials and Devices funderid: 2017D04029 – fundername: National Natural Science Foundation of China funderid: 52002398 – fundername: High‐level Talent Project of Xinjiang Uygur Autonomous Region funderid: 2020000039 – fundername: Xinjiang Key Laboratory of Electronic Information Materials and Devices grantid: 2017D04029 – fundername: High-level Talent Project of Xinjiang Uygur Autonomous Region grantid: 2020000039 – fundername: National Natural Science Foundation of China grantid: 52002398 – fundername: High‐level Talent Project of Xinjiang Uygur Autonomous Region grantid: 2020000039 – fundername: ; grantid: 52002398 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACGFS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN EJD ITC NPM AAYXX CITATION 3V. 7XB 8FK MBDVC PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c5294-cc67660430c8c7f9a065cc6831401c6f45d8558720022d876a2b455a84e46f1a3 |
IEDL.DBID | RPM |
ISSN | 2198-3844 |
IngestDate | Tue Oct 22 15:05:40 EDT 2024 Tue Sep 17 21:02:36 EDT 2024 Fri Oct 25 01:56:45 EDT 2024 Thu Oct 10 20:04:30 EDT 2024 Thu Sep 26 17:55:47 EDT 2024 Wed Oct 16 00:40:46 EDT 2024 Sat Aug 24 01:00:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | chalcogenide tetrahedral units alkaline earth metals nonlinear optical materials chalcopyrite-like structures |
Language | English |
License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5294-cc67660430c8c7f9a065cc6831401c6f45d8558720022d876a2b455a84e46f1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9214-3612 0000-0003-4521-4507 0000-0003-4763-1603 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130896/ |
PMID | 35404514 |
PQID | 2668703890 |
PQPubID | 4365299 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_29b431cdb7334500b7473b5ed16fbc88 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9130896 proquest_miscellaneous_2649251967 proquest_journals_2668703890 crossref_primary_10_1002_advs_202106120 pubmed_primary_35404514 wiley_primary_10_1002_advs_202106120_ADVS3874 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2021; 9 1955; 279 1993; 47 2021; 27 2019; 4 2020 2017; 406 333 2021 2020; 31 92 2017; 4 1975 2013 2018 2018; 14 135 140 57 2013 2020 2020 2022 2021; 1 56 33 44 33 1987; 70 2015; 54 2008 2003; 36 2020 2016 2021 2020 2021 2021; 20 31 143 59 33 21 2019 2022 2020 2021; 31 453 32 60 2021 2006 2017 2017 2014 2017 2017; 121 35 139 50 26 56 56 2020; 56 2017; 29 1985; 41 1995 1998; 52 57 2020; 32 1988 1989 1989; 38 39 40 1996; 54 1953; 271 2012 2020; 86 12 1988 2020; 37 62 2005 2018 2016 2020 2021; 377 138 59 19 2012; 51 2021; 14 2017; 72 2010; 49 1968; 39 2015 2017; 44 46 2005; 220 2001 2022; 61 2015; 44 2006 2006 2013 2011; 124 175 184 44 1976 2022 2019; 12 10 58 1997; 38 2015 2015 2021 2017 2022 2009; 288 21 448 17 901 9 1996 2011 2018; 77 133 57 2022; 10 1994; 91 1972; 33 2015 2020; 106 32 2012; 41 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_1_7 e_1_2_8_3_5 e_1_2_8_7_1 e_1_2_8_1_6 e_1_2_8_3_4 e_1_2_8_9_1 e_1_2_8_3_6 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_43_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_36_4 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_36_3 e_1_2_8_38_1 e_1_2_8_36_2 Nikogosyan D. N. (e_1_2_8_2_1) 2005 Sheldrick G. M. (e_1_2_8_48_1) 2001 e_1_2_8_30_3 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_4 (e_1_2_8_47_1) 2008 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_29_3 e_1_2_8_46_2 e_1_2_8_23_3 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_23_4 e_1_2_8_25_2 e_1_2_8_23_5 e_1_2_8_25_3 e_1_2_8_27_1 e_1_2_8_6_6 e_1_2_8_6_5 e_1_2_8_29_4 e_1_2_8_2_2 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_6_2 e_1_2_8_2_5 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_6_4 e_1_2_8_6_3 e_1_2_8_8_1 e_1_2_8_42_2 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_42_3 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_12_2 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Su Y. J. (e_1_2_8_23_2) 2020; 56 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 49 start-page: 9212 year: 2010 publication-title: Inorg. Chem. – volume: 39 start-page: 3798 year: 1968 publication-title: J. Appl. Phys. – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 36 start-page: 7 year: 2003 publication-title: J. Appl. Crystallogr. – volume: 4 start-page: 1472 year: 2017 publication-title: Inorg. Chem. Front. – year: 2001 – volume: 41 start-page: 244 year: 1985 publication-title: Acta Crystallogr. B – volume: 288 21 448 17 901 9 start-page: 1 193 2254 1186 year: 2015 2015 2021 2017 2022 2009 publication-title: Coord. Chem. Rev. IEEE J. Sel. Top. Quantum Electron. Coord. Chem. Rev. Cryst. Growth Des. J. Alloys Compd. Cryst. Growth Des. – volume: 14 start-page: 6166 year: 2021 publication-title: Materials – volume: 12 10 58 start-page: 367 649 93 year: 1976 2022 2019 publication-title: IEEE J. Quantum Electron. J. Mater. Chem. C Inorg. Chem. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 121 35 139 50 26 56 56 start-page: 1130 710 1222 849 3916 year: 2021 2006 2017 2017 2014 2017 2017 publication-title: Chem. Rev. Chem. Soc. Rev. J. Am. Chem. Soc. Acc. Chem. Res. Chem. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 29 start-page: 499 year: 2017 publication-title: Chem. Mater. – volume: 1 56 33 44 33 start-page: 1313 36 313 4783 year: 2013 2020 2020 2022 2021 publication-title: APL Mater. Acta Metall. Sin. Mater. Today Energy Storage Mater.. Chem. Mater. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 31 92 start-page: 9024 year: 2021 2020 publication-title: ACS Appl. Mater. Interfaces Anal. Chem. – year: 2008 – volume: 279 start-page: 241 year: 1955 publication-title: Z. Anorg. Allg. Chem. – volume: 31 453 32 60 start-page: 3034 8947 year: 2019 2022 2020 2021 publication-title: Chem. Mater. Coord. Chem. Rev. Chem. Mater. Angew. Chem., Int. Ed. – volume: 20 31 143 59 33 21 start-page: 7550 7514 6514 year: 2020 2016 2021 2020 2021 2021 publication-title: Cryst. Growth Des. Semicond. Sci. Technol. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Chem. Mater. Mater. Today Phys. – volume: 41 start-page: 5653 year: 2012 publication-title: Dalton Trans.. – volume: 271 start-page: 153 year: 1953 publication-title: Z. Anorg. Allg. Chem. – volume: 91 start-page: 269 year: 1994 publication-title: Solid State Commun.. – volume: 10 start-page: 96 year: 2022 publication-title: J. Mater. Chem. C – volume: 44 46 year: 2015 2017 publication-title: Dalton Trans.. Dalton Trans. – volume: 220 start-page: 567 year: 2005 publication-title: Z. Kristallogr. ‐ Cryst. Mater. – volume: 44 year: 2015 publication-title: Dalton Trans.. – volume: 14 135 140 57 start-page: 1380 4215 2150 year: 1975 2013 2018 2018 publication-title: Appl. Opt. J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 54 year: 2015 publication-title: Inorg. Chem. – volume: 406 333 start-page: 57 year: 2020 2017 publication-title: Coord. Chem. Rev. Coord. Chem. Rev. – volume: 27 start-page: 6538 year: 2021 publication-title: Chem. ‐ Eur. J. – volume: 70 start-page: 121 year: 1987 publication-title: J. Solid State Chem. – volume: 77 133 57 start-page: 3865 7786 6095 year: 1996 2011 2018 publication-title: Phys. Rev. Lett. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 86 12 year: 2012 2020 publication-title: Phys. Rev. B ACS Appl. Mater. Interfaces – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 38 39 40 start-page: 9469 1329 year: 1988 1989 1989 publication-title: Phys. Rev. B Phys. Rev. B Phys. Rev. B – volume: 47 start-page: 4174 year: 1993 publication-title: Phys. Rev. B – volume: 33 start-page: 501 year: 1972 publication-title: J. Phys. Chem. Solids – volume: 37 62 start-page: 8958 1426 year: 1988 2020 publication-title: Phys. Rev. B Phys. Solid State – volume: 4 start-page: 331 year: 2019 publication-title: Nat. Rev. Mater. – volume: 106 32 start-page: 6772 year: 2015 2020 publication-title: Appl. Phys. Lett. Chem. Mater. – volume: 51 start-page: 5839 year: 2012 publication-title: Inorg. Chem. – volume: 52 57 start-page: 3905 year: 1995 1998 publication-title: Phys. Rev. B Phys. Rev. B – volume: 38 start-page: 233 year: 1997 publication-title: Infrared Phys. Technol. – volume: 72 start-page: 795 year: 2017 publication-title: Opt. Mater. – volume: 32 start-page: 6906 year: 2020 publication-title: Chem. Mater. – volume: 377 138 59 19 start-page: 191 7422 year: 2005 2018 2016 2020 2021 publication-title: Coord. Chem. Rev. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Mater. Today Phys. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 124 175 184 44 start-page: 713 1172 227 year: 2006 2006 2013 2011 publication-title: J. Chem. Phys. Comput. Phys. Commun. Comput. Phys. Commun. Acc. Chem. Res. – ident: e_1_2_8_4_2 doi: 10.1016/j.ccr.2021.214328 – ident: e_1_2_8_6_2 doi: 10.1109/JSTQE.2014.2378595 – ident: e_1_2_8_1_3 doi: 10.1021/jacs.7b05943 – ident: e_1_2_8_30_2 doi: 10.1103/PhysRevB.39.10429 – ident: e_1_2_8_28_1 doi: 10.1016/0022-4596(87)90185-X – ident: e_1_2_8_1_6 doi: 10.1002/anie.201708231 – ident: e_1_2_8_8_1 doi: 10.1016/j.optmat.2017.07.020 – volume: 56 start-page: 1313 year: 2020 ident: e_1_2_8_23_2 publication-title: Acta Metall. Sin. contributor: fullname: Su Y. J. – ident: e_1_2_8_2_5 doi: 10.1016/j.mtphys.2021.100432 – ident: e_1_2_8_29_3 doi: 10.1016/j.cpc.2012.12.009 – ident: e_1_2_8_30_1 doi: 10.1103/PhysRevB.38.9469 – ident: e_1_2_8_19_1 doi: 10.1021/acs.chemmater.6b05026 – ident: e_1_2_8_10_1 doi: 10.1039/D1TC05436H – ident: e_1_2_8_29_2 doi: 10.1016/j.cpc.2006.07.020 – ident: e_1_2_8_43_2 doi: 10.1134/S1063783420080120 – ident: e_1_2_8_23_5 doi: 10.1021/acs.chemmater.1c01369 – ident: e_1_2_8_34_1 doi: 10.1002/zaac.19532710307 – ident: e_1_2_8_27_1 doi: 10.1016/0038-1098(94)90300-X – volume-title: Nonlinear Optical Crystals: A Complete Survey year: 2005 ident: e_1_2_8_2_1 contributor: fullname: Nikogosyan D. N. – ident: e_1_2_8_9_1 doi: 10.1021/ic1006742 – ident: e_1_2_8_5_1 doi: 10.1016/S1350-4495(97)00017-0 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevB.37.8958 – ident: e_1_2_8_46_2 doi: 10.1103/PhysRevB.57.3905 – ident: e_1_2_8_6_5 doi: 10.1016/j.jallcom.2021.163384 – ident: e_1_2_8_4_4 doi: 10.1002/anie.202107613 – ident: e_1_2_8_25_2 doi: 10.1039/D1TC04717E – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevB.52.14636 – ident: e_1_2_8_18_1 doi: 10.1002/chem.202005404 – ident: e_1_2_8_23_3 doi: 10.1016/j.mattod.2019.10.005 – ident: e_1_2_8_2_4 doi: 10.1002/anie.202010319 – ident: e_1_2_8_4_1 doi: 10.1021/acs.chemmater.9b01023 – volume-title: MgGa2Se4 Crystal Structure: Datasheet from "PAULING FILE Multinaries Edition –2012" in SpringerMaterials ident: e_1_2_8_30_4 – ident: e_1_2_8_38_2 doi: 10.1021/acs.analchem.0c01158 – ident: e_1_2_8_40_1 doi: 10.1021/acs.chemmater.0c01971 – ident: e_1_2_8_7_1 doi: 10.1039/D0CC05132B – ident: e_1_2_8_36_4 doi: 10.1002/anie.201712168 – ident: e_1_2_8_26_1 doi: 10.1016/0022-3697(72)90032-7 – ident: e_1_2_8_42_3 doi: 10.1002/anie.201802058 – volume-title: SHELXTL, version 6.12 year: 2001 ident: e_1_2_8_48_1 contributor: fullname: Sheldrick G. M. – volume-title: SAINT, Version 7.60A year: 2008 ident: e_1_2_8_47_1 – ident: e_1_2_8_17_1 doi: 10.1002/adom.202101729 – ident: e_1_2_8_49_1 doi: 10.1107/S0021889802022112 – ident: e_1_2_8_42_2 doi: 10.1021/ja111083x – ident: e_1_2_8_1_2 doi: 10.1039/b511119f – ident: e_1_2_8_1_5 doi: 10.1021/cm401737s – ident: e_1_2_8_45_1 doi: 10.1103/PhysRevB.47.4174 – ident: e_1_2_8_4_3 doi: 10.1021/acs.chemmater.0c02929 – ident: e_1_2_8_29_4 doi: 10.1021/ar1001318 – ident: e_1_2_8_36_2 doi: 10.1021/ja400500m – ident: e_1_2_8_21_2 doi: 10.1016/j.ccr.2016.11.012 – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevB.86.014109 – ident: e_1_2_8_11_1 doi: 10.1002/anie.202215827 – ident: e_1_2_8_24_1 doi: 10.1063/1.4906427 – ident: e_1_2_8_37_1 doi: 10.1002/zaac.19552790502 – ident: e_1_2_8_23_1 doi: 10.1063/1.4812323 – ident: e_1_2_8_33_1 doi: 10.1039/C5DT03215F – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_6_3 doi: 10.1016/j.ccr.2021.214154 – ident: e_1_2_8_23_4 doi: 10.1016/j.ensm.2021.10.029 – ident: e_1_2_8_2_2 doi: 10.1016/j.ccr.2018.09.002 – ident: e_1_2_8_20_1 doi: 10.1002/adom.202001856 – ident: e_1_2_8_35_1 doi: 10.1063/1.1656857 – ident: e_1_2_8_38_1 doi: 10.1021/acsami.1c06933 – ident: e_1_2_8_16_1 doi: 10.1039/c2dt12493a – ident: e_1_2_8_6_6 doi: 10.1021/cg8010579 – ident: e_1_2_8_15_1 doi: 10.1021/acs.inorgchem.5b01859 – ident: e_1_2_8_1_4 doi: 10.1021/acs.accounts.7b00033 – ident: e_1_2_8_3_5 doi: 10.1021/acs.chemmater.1c01982 – ident: e_1_2_8_30_3 doi: 10.1103/PhysRevB.40.1329 – ident: e_1_2_8_29_1 doi: 10.1063/1.2210932 – ident: e_1_2_8_3_4 doi: 10.1002/anie.202002291 – ident: e_1_2_8_12_2 doi: 10.1039/C7DT90127E – ident: e_1_2_8_1_1 doi: 10.1021/acs.chemrev.0c00796 – ident: e_1_2_8_2_3 doi: 10.1021/jacs.6b03734 – ident: e_1_2_8_3_3 doi: 10.1021/jacs.1c03930 – ident: e_1_2_8_13_1 doi: 10.1039/C7QI00004A – ident: e_1_2_8_21_1 doi: 10.1016/j.ccr.2019.213150 – ident: e_1_2_8_6_1 doi: 10.1016/j.ccr.2015.01.005 – ident: e_1_2_8_6_4 doi: 10.1021/acs.cgd.7b00214 – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_41_1 doi: 10.1524/zkri.220.5.567.65075 – ident: e_1_2_8_22_1 doi: 10.1038/s41578-019-0101-8 – ident: e_1_2_8_3_1 doi: 10.1021/acs.cgd.0c01234 – ident: e_1_2_8_3_6 doi: 10.1016/j.mtphys.2021.100569 – ident: e_1_2_8_32_1 doi: 10.1107/S0108768185002063 – ident: e_1_2_8_39_1 doi: 10.3390/ma14206166 – ident: e_1_2_8_12_1 doi: 10.1039/C5DT01635E – ident: e_1_2_8_3_2 doi: 10.1088/0268-1242/31/12/123001 – ident: e_1_2_8_24_2 doi: 10.1021/acs.chemmater.0c02583 – ident: e_1_2_8_25_1 doi: 10.1109/JQE.1976.1069169 – ident: e_1_2_8_31_2 doi: 10.1021/acsami.0c15728 – ident: e_1_2_8_36_1 doi: 10.1364/AO.14.001380 – ident: e_1_2_8_1_7 doi: 10.1002/anie.201700540 – ident: e_1_2_8_36_3 doi: 10.1021/jacs.8b10009 – ident: e_1_2_8_14_1 doi: 10.1021/ic300373z – ident: e_1_2_8_25_3 doi: 10.1021/acs.inorgchem.8b01174 |
SSID | ssj0001537418 |
Score | 2.5136523 |
Snippet | Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like... Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite-like... Abstract Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial... Abstract Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2106120 |
SubjectTerms | alkaline earth metals chalcogenide chalcopyrite‐like structures Crystal structure Design Genetic algorithms Lasers nonlinear optical materials Optical properties Spectrum analysis tetrahedral units |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA7SJ1_Eeh1tSwRBfRg6m9skj23ZUsWtYi30bcht2NIyu6yt0Dd_gj-hv62_xHOS2WEXhb74OEmGhHNJvpOcfCHkLbPgRoq3pak8BCijIEvtlCk1M8G0EOWqgPsdk2N1dCo-ncmzlae-MCcs0wNnwe0y42CN88HVnAtZVQ7wL3cyhpFqndf5mm9lVoKpfD-YIy3LkqWxYrs2_ER2boYhED7uvbIKJbL-fyHMvxMlVwFsWoEOH5NHPXSke3nIm-RB7J6Qzd45f9D3PYP0h6fkFpRPwdMh6k2Cp7OWniSi2OtFpF8XeDiTym0X6Hjg-KcAYCkAQpoT84Zf9y4vAK3f_fo9BnFN6SQCYIcvJLayAFIDPZjaSz-b3ywAv0LF5_OLSD9-o8eZhsMu6Jd52jKnE3uVLP4ZOT0cfz84KvunGEovmRGl96pWCvnBvPZ1aywgFyjTHOMzr1ohg5ZS15jywQLMsJY5IaXVIgrVjix_Tja6WRdfEhpCxQPTTkuAB9ZIU1nDnfBWjVqrPSvIu6Vqmnlm3GgytzJrUInNoMSC7KPmhlbIlJ0KwH6a3n6a--ynIFtLvTe9-0IXSsE8BlgO-ngzVIPj4WmK7eLsGtsgryNMYHVBXmQzGUaCm2kCoGhB6jUDWhvqek13Pk3k3gZAhTaqIGUytXtE0AB4OeG6Fq_-hyxek4cMb3ekfM4tsgGGGbcBc125neRefwB3uyt5 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LbtQwFLVgumGDKM_QgoyEBCyiZhzbsVeoraYqiBmqlkrdRX4kTNUqGdKHxI5P4BP4Nr6Eex1P6AgEy9iJ8rjn2ude3xwT8pIZcCOZ16nOHAQoYy9SZaVOFdNe1xDlSo_5julM7h_z9yfiJCbcLmJZ5XJMDAO1bx3myLdgIgFowfSavV18SXHXKFxdjVto3CZrDCKFbETWdiazg8PfWRaRozzLUq0xY1vGX6NKN8NQCDf5vjEbBdH-vzHNPwsmbxLZMBPt3SN3I4Wk273N18mtqrlP1qOTXtDXUUn6zQPyA0BAweMh-g0GoG1Nj4Jg7FVX0YMOF2lCu2k8nQxa_xSILAViSPsCveHS7fMzYO0_v32fAN7mdFoBcYcjFLgyQFY93Z2bc9cuvnbwzaDjw-lZRd8d0lkvx2E6-nERUud0ai4D8h-S473Jp939NG7JkDrBNE-dk4WUqBPmlCtqbYDBQJvKMU5zsubCKyFUgaUfzMNIa5jlQhjFKy7rsckfkVHTNtUTQr3Pcs-UVQJogtFCZ0bnljsjx7VRjiXk1dI05aJX3ih7jWVWohHLwYgJ2UHLDWehYnZoaLvPZXTAkmkLXMl5W-Q5F1lmIY7Kraj8WNbWKZWQzaXdy-jGcIsBdAl5MXSDA-Kqimmq9grPQX1HGMiKhDzuYTI8CSbVOFDShBQrAFp51NWe5nQeRL41kAulZULSALX_fIISSMxRrgr-9N-vsUHuMPx_I1RsbpIRQK56Bqzq0j6PrvMLQYYksQ priority: 102 providerName: ProQuest – databaseName: Wiley-Blackwell Open Access Collection dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTtwwFLUquummKvSVFipXqtR2EZHxK_YS0CBadSgqRWIX-ZEwCJSMAlTqjk_gE_ptfEnvdTKBqJWqLmM7seV7j3PutXNCyDtmAUaKV6nJPAQokyBT7ZRJNTPBVBDlqoD5jtm-2jsSn4_l8b2v-Dt9iCHhhsiI6zUC3LqLzTvRUBt-oNw2w5iGQdD-EGVjUD2fiYO7LIvkKM-Cf5iDflOuhVgqN2Zsc_yI0ZspCvj_jXX-eXjyPqmNb6XdJ-RxTyfpVmf_VfKgrNfIag_YC_qhV5X--JT8AoeggH6IhKMxaFPRwygee9WW9KDFDZtYbutAp4PuPwVSS4Ek0u6w3nDr1vkZMPjb65sp-N6czkog8XCFYlcWpjbQnbk9983iZwucFiq-nJ6V9NM3ut9NvW3p10VMo9OZvYwoeEaOdqffd_bS_vcMqZfMiNR7lSuFmmFe-7wyFtgMlGmOMZtXlZBBS6lzPAbCAqy6ljkhpdWiFKqaWP6crNRNXb4kNISMB6adlkAZrJEms4Y74a2aVFZ7lpD3S9MUi06Fo-j0llmBRiwGIyZkGy03tEL17FjQtCdFD8aCGQe8yQeXcy5kljmIqbiTZZioynmtE7K-tHvRQxq6UArWNuB30MfboRrAiDssti6bK2yDWo-wqOUJedG5yTASTLAJoKcJyUcONBrquKY-nUfBbwNEQxuVkDS62j-moABCc8h1Ll79Z_vX5BHDjzvicc51sgI-WG4A5bp0byKqfgORKie9 priority: 102 providerName: Wiley-Blackwell |
Title | The Combination of Structure Prediction and Experiment for the Exploration of Alkali‐Earth Metal‐Contained Chalcopyrite‐Like IR Nonlinear Optical Material |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202106120 https://www.ncbi.nlm.nih.gov/pubmed/35404514 https://www.proquest.com/docview/2668703890 https://search.proquest.com/docview/2649251967 https://pubmed.ncbi.nlm.nih.gov/PMC9130896 https://doaj.org/article/29b431cdb7334500b7473b5ed16fbc88 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFD5axw03iPEbGJWRkICLrKljO_blVnUaiJZqY9LuIv8ktFqXVmVD4o5H4BF4Np6EY-dHq0BC4jJ2Ils-37G_4xx_BnhFNbqRSMtYJRYDlKHjsTRCxZIqp0qMcoXz-x2TqTg5Z-8v-MUO8PYsTEjat2ZxUC2vDqrFPORWrq_soM0TG8wmI4UTr1Ri0IMeAvRWiF4fDU69Iksr0JjQgXZfvTA39dEP9Ve_-b0Oxodsay0Kkv1_45l_pkveprFhHTq-D_caAkkO647uwU5RPYC9xkW_kDeNjvTbh_ATIUDQ3zH2DcNPViU5C3KxN5uCzDb-F00o15Uj407pnyCNJUgLSZ2e1316uLxEzv7r-48xDtKcTAqk7fjk5a00UlVHRnO9tKv1tw2yWKz4sLgsyLtTMq3FOPSGfFyHjXMy0dcB94_g_Hj8aXQSNxcyxJZTxWJrRSaEVwmz0mal0shfsEymPkqzomTcSc5l5hM_qMN5VlPDONeSFUyUQ50-ht1qVRVPgTiXpI5KIzmSBK24SrRKDbNaDEstLY3gdWuafF3rbuS1wjLNvT3zzp4RHHnLdW95vexQsNp8zhvU5FQZZErWmSxNGU8Sg1FUanjhhqI0VsoI9lu7540TYxNC4GyGjA7beNlVo_v5fyq6KlY3_h2v7ojTWBbBkxomXU9amEWQbQFoq6vbNYj4IPHdIDyCOEDtH0OQI4U5S2XGnv13S8_hLvUHO0Iq5z7sIhqLF0i3rk0fepTN-nDnaDydnfbDpkU_uNxvzQ4vpA |
link.rule.ids | 230,315,730,783,787,867,888,2109,11574,21400,27936,27937,33756,33757,43817,46064,46488,50826,50935,53804,53806,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagPcAFUX5DCxgJCThEzdqxY59QW221hd2l6o_UW-TYCVu1SrZpi8SNR-AReDaehBnHG7oCwTF2ovzMN_Y348lnQl4zA24keRXrxEKAMnAiVoXUsWLa6QqiXOkw3zGZytFx-uFEnISE22Uoq1yMiX6gdo3FHPkmTCQALZhek_fzixh3jcLV1bCFxm2yilJVEHytbg-n-we_syyCozzLQq0xYZvGfUGVboahEG7yfWM28qL9f2OafxZM3iSyfibavU_uBQpJtzqbr5FbZf2ArAUnvaRvg5L0u4fkB4CAgsdD9OsNQJuKHnrB2Ou2pPstLtL4dlM7Ouy1_ikQWQrEkHYFev2lW-dnwNp_fvs-BLzN6KQE4g5HKHBlgKw6ujMz57aZf23hm0HH-PSspHsHdNrJcZiWfpr71DmdmCuP_EfkeHd4tDOKw5YMsRVMp7G1MpMSdcKsslmlDTAYaFMc4zQrq1Q4JYTKsPSDORhpDStSIYxKy1RWA8Mfk5W6qcunhDqXcMdUoQTQBKOFTozmRWqNHFRGWRaRNwvT5PNOeSPvNJZZjkbMeyNGZBst15-Fitm-oWk_58EBc6YL4ErWFRnnqUiSAuIoXojSDWRVWKUisrGwex7cGG7Rgy4ir_pucEBcVTF12VzjOajvCANZFpEnHUz6J8GkWgqUNCLZEoCWHnW5pz6deZFvDeRCaRmR2EPtP58gBxJzyFWWPvv3a7wkd0ZHk3E-3pt-XCd3Gf7L4as3N8gKwK98DgzrqngR3OgXToEnqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LbtQwFLVgKiE2iPIMLWAkJGARTcav2CvUlhm10BlGLZW6i_xImKpVMp22SOz4BD6Bb-NLuHY8oSMQLGMnyuPeY597fXOM0EuiAUaCVqnKLAQoA8dTaYRKJVFOVRDlCufzHeOJ2D1i74_5cax_uohllcsxMQzUrrE-R96HiQRcC6bXrF_Fsojpu9Hb-Xnqd5DyK61xO42baC1ngmY9tLY9nEwPfmdcOPVSLUvlxoz0tfviFbuJD4v8ht_XZqYg4P831vln8eR1UhtmpdFddCfSSbzV2n8d3Sjre2g9AvYCv46q0m_uox_gEBjQD5FwMAZuKnwYxGOvFiWeLvyCTWjXtcPDTvcfA6nFQBJxW6zXXbp1dgoM_ue370PwvRkel0Di4ciLXWkgrg7vzPSZbeZfF_DNoGP_5LTEewd40kpz6AX-OA9pdDzWlwEFD9DRaPhpZzeN2zOklhPFUmtFLoTXDLPS5pXSwGagTVIfs1lRMe4k5zL3ZSDEwairiWGca8lKJqqBpg9Rr27q8jHCzmXUEWkkB8qgFVeZVtQwq8Wg0tKSBL1amqaYtyocRau3TApvxKIzYoK2veW6s7x6dmhoFp-LCMaCKAO8yTqTU8p4lhmIqajhpRuIylgpE7S5tHsRIQ236BwwQS-6bgCjX2HRddlc-XO81iMManmCHrVu0j2JT7AxoKcJylccaOVRV3vqk1kQ_FZANKQSCUqDq_3nExRAaA6pzNmTf7_Gc3QLEFTs700-bKDbxP_WEQo5N1EPvK98CmTr0jyLKPoF_kkr2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Combination+of+Structure+Prediction+and+Experiment+for+the+Exploration+of+Alkali%E2%80%90Earth+Metal%E2%80%90Contained+Chalcopyrite%E2%80%90Like+IR+Nonlinear+Optical+Material&rft.jtitle=Advanced+science&rft.au=Wang%2C+Peng&rft.au=Chu%2C+Yu&rft.au=Tudi%2C+Abudukadi&rft.au=Xie%2C+Congwei&rft.date=2022-05-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=9&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202106120&rft.externalDBID=10.1002%252Fadvs.202106120&rft.externalDocID=ADVS3874 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |