The Combination of Structure Prediction and Experiment for the Exploration of Alkali‐Earth Metal‐Contained Chalcopyrite‐Like IR Nonlinear Optical Material

Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO mat...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 9; no. 15; pp. e2106120 - n/a
Main Authors Wang, Peng, Chu, Yu, Tudi, Abudukadi, Xie, Congwei, Yang, Zhihua, Pan, Shilie, Li, Junjie
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.05.2022
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa2Se4, has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa2Se4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy. The first defect‐chalcopyrite‐like alkali‐earth metal selenide IR NLO material DCL‐MgGa2Se4 with balanced SHG response and band gap is rationally designed and fabricated by a calculation and experiment combined strategy.
AbstractList Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite-like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect-CL (DCL) alkali-earth metal (AEM) selenide IR NLO material, DCL-MgGa Se , has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type-I phase-matching (PM) behavior and a wide IR transparent range. The results indicate that DCL-MgGa Se is a promising mid-to-far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy.
Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa2Se4, has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa2Se4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy. The first defect‐chalcopyrite‐like alkali‐earth metal selenide IR NLO material DCL‐MgGa2Se4 with balanced SHG response and band gap is rationally designed and fabricated by a calculation and experiment combined strategy.
Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa2Se4, has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa2Se4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy.
Abstract Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa 2 Se 4 , has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe 4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS 2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa 2 Se 4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy.
Abstract Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa2Se4, has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa2Se4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy.
Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa 2 Se 4 , has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe 4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS 2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa 2 Se 4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy. The first defect‐chalcopyrite‐like alkali‐earth metal selenide IR NLO material DCL‐MgGa 2 Se 4 with balanced SHG response and band gap is rationally designed and fabricated by a calculation and experiment combined strategy.
Author Wang, Peng
Li, Junjie
Xie, Congwei
Yang, Zhihua
Chu, Yu
Tudi, Abudukadi
Pan, Shilie
AuthorAffiliation 3 Skolkovo Institute of Science and Technology Skolkovo Innovation Center 3 Nobel Street Moscow 143026 Russian Federation
1 CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices Urumqi 830011 P. R. China
2 Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
AuthorAffiliation_xml – name: 3 Skolkovo Institute of Science and Technology Skolkovo Innovation Center 3 Nobel Street Moscow 143026 Russian Federation
– name: 1 CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Technical Institute of Physics & Chemistry CAS Xinjiang Key Laboratory of Electronic Information Materials and Devices Urumqi 830011 P. R. China
– name: 2 Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0003-4763-1603
  surname: Wang
  fullname: Wang, Peng
  organization: Xinjiang Key Laboratory of Electronic Information Materials and Devices
– sequence: 2
  givenname: Yu
  surname: Chu
  fullname: Chu, Yu
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Abudukadi
  surname: Tudi
  fullname: Tudi, Abudukadi
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Congwei
  surname: Xie
  fullname: Xie, Congwei
  organization: Skolkovo Innovation Center
– sequence: 5
  givenname: Zhihua
  orcidid: 0000-0001-9214-3612
  surname: Yang
  fullname: Yang, Zhihua
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Shilie
  orcidid: 0000-0003-4521-4507
  surname: Pan
  fullname: Pan, Shilie
  email: slpan@ms.xjb.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Junjie
  surname: Li
  fullname: Li, Junjie
  email: lijunjie@ms.xjb.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35404514$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhUeoiJbSLUtkiQ2bBP_bs0GqQoBIKUW0sLU8Hk_j1LFTj6eQHY_AI_BsPAluU6KWDSuPz_3u8dyr87TaCzHYqnqO4BhBiF_r9rofY4gR5AjDR9UBRrUcEUnp3r3v_eqo75cQQsSIoEg-qfYJo5AyRA-qX-cLCyZx1bigs4sBxA6c5TSYPCQLPiXbOnOr69CC6fe1TW5lQwZdTCCX1iL5mHatx_5Se_f7x8-pTnkBTmzWvtwmMWTtgm3BZKG9ietNctmWwtxdWjD7DD7G4EtdJ3C6zs5oD050Lm9p_6x63Gnf26O787D68m56Pvkwmp--n02O5yPDcE1HxnDBOaQEGmlEV2vIWdEkQRQiwzvKWsmYFLjsDbdScI0bypiW1FLeIU0Oq9nWt416qdZlTJ02KmqnboWYLlQZyRlvFa4bSpBpG0EIZRA2ggrSMNsi3jVGyuL1Zuu1HpqVbU1ZWNL-genDSnALdRGvVY0IlDUvBq_uDFK8Gmyf1cr1xnqvg41DrzCnNWao5qKgL_9Bl3FIoayqUFwKSGQNCzXeUibFvk-22_0MguomS-omS2qXpdLw4v4IO_xvcgpAt8A35-3mP3bq-O3XMyIFJX8AN9fauA
CitedBy_id crossref_primary_10_1002_smll_202305074
crossref_primary_10_1039_D3DT02515B
crossref_primary_10_1039_D4CP01302F
crossref_primary_10_1021_acs_inorgchem_2c01828
crossref_primary_10_1039_D4DT01536C
crossref_primary_10_1515_znb_2023_0098
crossref_primary_10_1002_chem_202202063
crossref_primary_10_1002_chem_202203597
crossref_primary_10_1002_adom_202400084
crossref_primary_10_1016_j_cjsc_2023_100033
crossref_primary_10_1016_j_ccr_2023_215617
crossref_primary_10_1021_jacs_2c08318
crossref_primary_10_1007_s12274_023_5964_8
crossref_primary_10_1021_acs_chemmater_4c00310
crossref_primary_10_1039_D3CP01081C
crossref_primary_10_1039_D4SC00334A
crossref_primary_10_1021_acs_inorgchem_2c01540
crossref_primary_10_1016_j_cej_2023_143911
crossref_primary_10_1002_adom_202300736
crossref_primary_10_1021_acsmaterialslett_2c00409
crossref_primary_10_1021_acs_chemmater_3c01493
crossref_primary_10_1039_D3CS00691C
crossref_primary_10_1007_s40843_023_2592_x
crossref_primary_10_1002_ange_202307895
crossref_primary_10_1039_D4QI00293H
crossref_primary_10_1021_acs_inorgchem_3c01700
crossref_primary_10_1002_adom_202202147
crossref_primary_10_1002_smll_202302819
crossref_primary_10_1021_acs_chemmater_3c00291
crossref_primary_10_1039_D4RA01791A
crossref_primary_10_1038_s41467_024_47209_4
crossref_primary_10_1142_S0217984924503743
crossref_primary_10_1002_smll_202308806
crossref_primary_10_1002_adom_202300256
crossref_primary_10_1039_D3QI01937C
crossref_primary_10_1002_adfm_202314933
crossref_primary_10_1021_acs_chemrev_2c00422
crossref_primary_10_1002_anie_202307895
crossref_primary_10_1039_D3DT01496G
crossref_primary_10_1039_D3QI00505D
crossref_primary_10_1007_s11426_022_1452_8
crossref_primary_10_1021_acs_chemrev_1c01067
crossref_primary_10_1039_D3DT03637E
crossref_primary_10_1016_j_mtphys_2023_101166
crossref_primary_10_3390_nano12234169
crossref_primary_10_1021_acs_inorgchem_3c03695
crossref_primary_10_1039_D2MH01200F
crossref_primary_10_1016_j_matt_2023_02_005
crossref_primary_10_1039_D3DT02807K
crossref_primary_10_1039_D3DT02952B
crossref_primary_10_1002_adom_202401100
crossref_primary_10_1016_j_jallcom_2023_172382
crossref_primary_10_1039_D3QI01144E
Cites_doi 10.1016/j.ccr.2021.214328
10.1109/JSTQE.2014.2378595
10.1021/jacs.7b05943
10.1103/PhysRevB.39.10429
10.1016/0022-4596(87)90185-X
10.1002/anie.201708231
10.1016/j.optmat.2017.07.020
10.1016/j.mtphys.2021.100432
10.1016/j.cpc.2012.12.009
10.1103/PhysRevB.38.9469
10.1021/acs.chemmater.6b05026
10.1039/D1TC05436H
10.1016/j.cpc.2006.07.020
10.1134/S1063783420080120
10.1021/acs.chemmater.1c01369
10.1002/zaac.19532710307
10.1016/0038-1098(94)90300-X
10.1021/ic1006742
10.1016/S1350-4495(97)00017-0
10.1103/PhysRevB.37.8958
10.1103/PhysRevB.57.3905
10.1016/j.jallcom.2021.163384
10.1002/anie.202107613
10.1039/D1TC04717E
10.1103/PhysRevB.52.14636
10.1002/chem.202005404
10.1016/j.mattod.2019.10.005
10.1002/anie.202010319
10.1021/acs.chemmater.9b01023
10.1021/acs.analchem.0c01158
10.1021/acs.chemmater.0c01971
10.1039/D0CC05132B
10.1002/anie.201712168
10.1016/0022-3697(72)90032-7
10.1002/anie.201802058
10.1002/adom.202101729
10.1107/S0021889802022112
10.1021/ja111083x
10.1039/b511119f
10.1021/cm401737s
10.1103/PhysRevB.47.4174
10.1021/acs.chemmater.0c02929
10.1021/ar1001318
10.1021/ja400500m
10.1016/j.ccr.2016.11.012
10.1103/PhysRevB.86.014109
10.1002/anie.202215827
10.1063/1.4906427
10.1002/zaac.19552790502
10.1063/1.4812323
10.1039/C5DT03215F
10.1103/PhysRevB.54.11169
10.1016/j.ccr.2021.214154
10.1016/j.ensm.2021.10.029
10.1016/j.ccr.2018.09.002
10.1002/adom.202001856
10.1063/1.1656857
10.1021/acsami.1c06933
10.1039/c2dt12493a
10.1021/cg8010579
10.1021/acs.inorgchem.5b01859
10.1021/acs.accounts.7b00033
10.1021/acs.chemmater.1c01982
10.1103/PhysRevB.40.1329
10.1063/1.2210932
10.1002/anie.202002291
10.1039/C7DT90127E
10.1021/acs.chemrev.0c00796
10.1021/jacs.6b03734
10.1021/jacs.1c03930
10.1039/C7QI00004A
10.1016/j.ccr.2019.213150
10.1016/j.ccr.2015.01.005
10.1021/acs.cgd.7b00214
10.1103/PhysRevLett.77.3865
10.1524/zkri.220.5.567.65075
10.1038/s41578-019-0101-8
10.1021/acs.cgd.0c01234
10.1016/j.mtphys.2021.100569
10.1107/S0108768185002063
10.3390/ma14206166
10.1039/C5DT01635E
10.1088/0268-1242/31/12/123001
10.1021/acs.chemmater.0c02583
10.1109/JQE.1976.1069169
10.1021/acsami.0c15728
10.1364/AO.14.001380
10.1002/anie.201700540
10.1021/jacs.8b10009
10.1021/ic300373z
10.1021/acs.inorgchem.8b01174
ContentType Journal Article
Copyright 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202106120
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Free Content
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library (ProQuest Database)
Science Journals (ProQuest Database)
Research Library (Corporate)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_29b431cdb7334500b7473b5ed16fbc88
10_1002_advs_202106120
35404514
ADVS3874
Genre article
Journal Article
GrantInformation_xml – fundername: Xinjiang Key Laboratory of Electronic Information Materials and Devices
  funderid: 2017D04029
– fundername: National Natural Science Foundation of China
  funderid: 52002398
– fundername: High‐level Talent Project of Xinjiang Uygur Autonomous Region
  funderid: 2020000039
– fundername: Xinjiang Key Laboratory of Electronic Information Materials and Devices
  grantid: 2017D04029
– fundername: High-level Talent Project of Xinjiang Uygur Autonomous Region
  grantid: 2020000039
– fundername: National Natural Science Foundation of China
  grantid: 52002398
– fundername: High‐level Talent Project of Xinjiang Uygur Autonomous Region
  grantid: 2020000039
– fundername: ;
  grantid: 52002398
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
EJD
ITC
NPM
AAYXX
CITATION
3V.
7XB
8FK
MBDVC
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c5294-cc67660430c8c7f9a065cc6831401c6f45d8558720022d876a2b455a84e46f1a3
IEDL.DBID RPM
ISSN 2198-3844
IngestDate Tue Oct 22 15:05:40 EDT 2024
Tue Sep 17 21:02:36 EDT 2024
Fri Oct 25 01:56:45 EDT 2024
Thu Oct 10 20:04:30 EDT 2024
Thu Sep 26 17:55:47 EDT 2024
Wed Oct 16 00:40:46 EDT 2024
Sat Aug 24 01:00:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords chalcogenide
tetrahedral units
alkaline earth metals
nonlinear optical materials
chalcopyrite-like structures
Language English
License Attribution
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5294-cc67660430c8c7f9a065cc6831401c6f45d8558720022d876a2b455a84e46f1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9214-3612
0000-0003-4521-4507
0000-0003-4763-1603
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130896/
PMID 35404514
PQID 2668703890
PQPubID 4365299
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_29b431cdb7334500b7473b5ed16fbc88
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9130896
proquest_miscellaneous_2649251967
proquest_journals_2668703890
crossref_primary_10_1002_advs_202106120
pubmed_primary_35404514
wiley_primary_10_1002_advs_202106120_ADVS3874
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 9
1955; 279
1993; 47
2021; 27
2019; 4
2020 2017; 406 333
2021 2020; 31 92
2017; 4
1975 2013 2018 2018; 14 135 140 57
2013 2020 2020 2022 2021; 1 56 33 44 33
1987; 70
2015; 54
2008
2003; 36
2020 2016 2021 2020 2021 2021; 20 31 143 59 33 21
2019 2022 2020 2021; 31 453 32 60
2021 2006 2017 2017 2014 2017 2017; 121 35 139 50 26 56 56
2020; 56
2017; 29
1985; 41
1995 1998; 52 57
2020; 32
1988 1989 1989; 38 39 40
1996; 54
1953; 271
2012 2020; 86 12
1988 2020; 37 62
2005 2018 2016 2020 2021; 377 138 59 19
2012; 51
2021; 14
2017; 72
2010; 49
1968; 39
2015 2017; 44 46
2005; 220
2001
2022; 61
2015; 44
2006 2006 2013 2011; 124 175 184 44
1976 2022 2019; 12 10 58
1997; 38
2015 2015 2021 2017 2022 2009; 288 21 448 17 901 9
1996 2011 2018; 77 133 57
2022; 10
1994; 91
1972; 33
2015 2020; 106 32
2012; 41
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_1_5
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_1_7
e_1_2_8_3_5
e_1_2_8_7_1
e_1_2_8_1_6
e_1_2_8_3_4
e_1_2_8_9_1
e_1_2_8_3_6
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_43_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_36_4
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_36_3
e_1_2_8_38_1
e_1_2_8_36_2
Nikogosyan D. N. (e_1_2_8_2_1) 2005
Sheldrick G. M. (e_1_2_8_48_1) 2001
e_1_2_8_30_3
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_4
(e_1_2_8_47_1) 2008
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_29_3
e_1_2_8_46_2
e_1_2_8_23_3
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_23_4
e_1_2_8_25_2
e_1_2_8_23_5
e_1_2_8_25_3
e_1_2_8_27_1
e_1_2_8_6_6
e_1_2_8_6_5
e_1_2_8_29_4
e_1_2_8_2_2
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_6_2
e_1_2_8_2_5
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_6_4
e_1_2_8_6_3
e_1_2_8_8_1
e_1_2_8_42_2
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_42_3
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_12_2
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Su Y. J. (e_1_2_8_23_2) 2020; 56
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 49
  start-page: 9212
  year: 2010
  publication-title: Inorg. Chem.
– volume: 39
  start-page: 3798
  year: 1968
  publication-title: J. Appl. Phys.
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 36
  start-page: 7
  year: 2003
  publication-title: J. Appl. Crystallogr.
– volume: 4
  start-page: 1472
  year: 2017
  publication-title: Inorg. Chem. Front.
– year: 2001
– volume: 41
  start-page: 244
  year: 1985
  publication-title: Acta Crystallogr. B
– volume: 288 21 448 17 901 9
  start-page: 1 193 2254 1186
  year: 2015 2015 2021 2017 2022 2009
  publication-title: Coord. Chem. Rev. IEEE J. Sel. Top. Quantum Electron. Coord. Chem. Rev. Cryst. Growth Des. J. Alloys Compd. Cryst. Growth Des.
– volume: 14
  start-page: 6166
  year: 2021
  publication-title: Materials
– volume: 12 10 58
  start-page: 367 649 93
  year: 1976 2022 2019
  publication-title: IEEE J. Quantum Electron. J. Mater. Chem. C Inorg. Chem.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 121 35 139 50 26 56 56
  start-page: 1130 710 1222 849 3916
  year: 2021 2006 2017 2017 2014 2017 2017
  publication-title: Chem. Rev. Chem. Soc. Rev. J. Am. Chem. Soc. Acc. Chem. Res. Chem. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 29
  start-page: 499
  year: 2017
  publication-title: Chem. Mater.
– volume: 1 56 33 44 33
  start-page: 1313 36 313 4783
  year: 2013 2020 2020 2022 2021
  publication-title: APL Mater. Acta Metall. Sin. Mater. Today Energy Storage Mater.. Chem. Mater.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 31 92
  start-page: 9024
  year: 2021 2020
  publication-title: ACS Appl. Mater. Interfaces Anal. Chem.
– year: 2008
– volume: 279
  start-page: 241
  year: 1955
  publication-title: Z. Anorg. Allg. Chem.
– volume: 31 453 32 60
  start-page: 3034 8947
  year: 2019 2022 2020 2021
  publication-title: Chem. Mater. Coord. Chem. Rev. Chem. Mater. Angew. Chem., Int. Ed.
– volume: 20 31 143 59 33 21
  start-page: 7550 7514 6514
  year: 2020 2016 2021 2020 2021 2021
  publication-title: Cryst. Growth Des. Semicond. Sci. Technol. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Chem. Mater. Mater. Today Phys.
– volume: 41
  start-page: 5653
  year: 2012
  publication-title: Dalton Trans..
– volume: 271
  start-page: 153
  year: 1953
  publication-title: Z. Anorg. Allg. Chem.
– volume: 91
  start-page: 269
  year: 1994
  publication-title: Solid State Commun..
– volume: 10
  start-page: 96
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 44 46
  year: 2015 2017
  publication-title: Dalton Trans.. Dalton Trans.
– volume: 220
  start-page: 567
  year: 2005
  publication-title: Z. Kristallogr. ‐ Cryst. Mater.
– volume: 44
  year: 2015
  publication-title: Dalton Trans..
– volume: 14 135 140 57
  start-page: 1380 4215 2150
  year: 1975 2013 2018 2018
  publication-title: Appl. Opt. J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 54
  year: 2015
  publication-title: Inorg. Chem.
– volume: 406 333
  start-page: 57
  year: 2020 2017
  publication-title: Coord. Chem. Rev. Coord. Chem. Rev.
– volume: 27
  start-page: 6538
  year: 2021
  publication-title: Chem. ‐ Eur. J.
– volume: 70
  start-page: 121
  year: 1987
  publication-title: J. Solid State Chem.
– volume: 77 133 57
  start-page: 3865 7786 6095
  year: 1996 2011 2018
  publication-title: Phys. Rev. Lett. J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 86 12
  year: 2012 2020
  publication-title: Phys. Rev. B ACS Appl. Mater. Interfaces
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 38 39 40
  start-page: 9469 1329
  year: 1988 1989 1989
  publication-title: Phys. Rev. B Phys. Rev. B Phys. Rev. B
– volume: 47
  start-page: 4174
  year: 1993
  publication-title: Phys. Rev. B
– volume: 33
  start-page: 501
  year: 1972
  publication-title: J. Phys. Chem. Solids
– volume: 37 62
  start-page: 8958 1426
  year: 1988 2020
  publication-title: Phys. Rev. B Phys. Solid State
– volume: 4
  start-page: 331
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 106 32
  start-page: 6772
  year: 2015 2020
  publication-title: Appl. Phys. Lett. Chem. Mater.
– volume: 51
  start-page: 5839
  year: 2012
  publication-title: Inorg. Chem.
– volume: 52 57
  start-page: 3905
  year: 1995 1998
  publication-title: Phys. Rev. B Phys. Rev. B
– volume: 38
  start-page: 233
  year: 1997
  publication-title: Infrared Phys. Technol.
– volume: 72
  start-page: 795
  year: 2017
  publication-title: Opt. Mater.
– volume: 32
  start-page: 6906
  year: 2020
  publication-title: Chem. Mater.
– volume: 377 138 59 19
  start-page: 191 7422
  year: 2005 2018 2016 2020 2021
  publication-title: Coord. Chem. Rev. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Mater. Today Phys.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 124 175 184 44
  start-page: 713 1172 227
  year: 2006 2006 2013 2011
  publication-title: J. Chem. Phys. Comput. Phys. Commun. Comput. Phys. Commun. Acc. Chem. Res.
– ident: e_1_2_8_4_2
  doi: 10.1016/j.ccr.2021.214328
– ident: e_1_2_8_6_2
  doi: 10.1109/JSTQE.2014.2378595
– ident: e_1_2_8_1_3
  doi: 10.1021/jacs.7b05943
– ident: e_1_2_8_30_2
  doi: 10.1103/PhysRevB.39.10429
– ident: e_1_2_8_28_1
  doi: 10.1016/0022-4596(87)90185-X
– ident: e_1_2_8_1_6
  doi: 10.1002/anie.201708231
– ident: e_1_2_8_8_1
  doi: 10.1016/j.optmat.2017.07.020
– volume: 56
  start-page: 1313
  year: 2020
  ident: e_1_2_8_23_2
  publication-title: Acta Metall. Sin.
  contributor:
    fullname: Su Y. J.
– ident: e_1_2_8_2_5
  doi: 10.1016/j.mtphys.2021.100432
– ident: e_1_2_8_29_3
  doi: 10.1016/j.cpc.2012.12.009
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRevB.38.9469
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.chemmater.6b05026
– ident: e_1_2_8_10_1
  doi: 10.1039/D1TC05436H
– ident: e_1_2_8_29_2
  doi: 10.1016/j.cpc.2006.07.020
– ident: e_1_2_8_43_2
  doi: 10.1134/S1063783420080120
– ident: e_1_2_8_23_5
  doi: 10.1021/acs.chemmater.1c01369
– ident: e_1_2_8_34_1
  doi: 10.1002/zaac.19532710307
– ident: e_1_2_8_27_1
  doi: 10.1016/0038-1098(94)90300-X
– volume-title: Nonlinear Optical Crystals: A Complete Survey
  year: 2005
  ident: e_1_2_8_2_1
  contributor:
    fullname: Nikogosyan D. N.
– ident: e_1_2_8_9_1
  doi: 10.1021/ic1006742
– ident: e_1_2_8_5_1
  doi: 10.1016/S1350-4495(97)00017-0
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevB.37.8958
– ident: e_1_2_8_46_2
  doi: 10.1103/PhysRevB.57.3905
– ident: e_1_2_8_6_5
  doi: 10.1016/j.jallcom.2021.163384
– ident: e_1_2_8_4_4
  doi: 10.1002/anie.202107613
– ident: e_1_2_8_25_2
  doi: 10.1039/D1TC04717E
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevB.52.14636
– ident: e_1_2_8_18_1
  doi: 10.1002/chem.202005404
– ident: e_1_2_8_23_3
  doi: 10.1016/j.mattod.2019.10.005
– ident: e_1_2_8_2_4
  doi: 10.1002/anie.202010319
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.chemmater.9b01023
– volume-title: MgGa2Se4 Crystal Structure: Datasheet from "PAULING FILE Multinaries Edition –2012" in SpringerMaterials
  ident: e_1_2_8_30_4
– ident: e_1_2_8_38_2
  doi: 10.1021/acs.analchem.0c01158
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.chemmater.0c01971
– ident: e_1_2_8_7_1
  doi: 10.1039/D0CC05132B
– ident: e_1_2_8_36_4
  doi: 10.1002/anie.201712168
– ident: e_1_2_8_26_1
  doi: 10.1016/0022-3697(72)90032-7
– ident: e_1_2_8_42_3
  doi: 10.1002/anie.201802058
– volume-title: SHELXTL, version 6.12
  year: 2001
  ident: e_1_2_8_48_1
  contributor:
    fullname: Sheldrick G. M.
– volume-title: SAINT, Version 7.60A
  year: 2008
  ident: e_1_2_8_47_1
– ident: e_1_2_8_17_1
  doi: 10.1002/adom.202101729
– ident: e_1_2_8_49_1
  doi: 10.1107/S0021889802022112
– ident: e_1_2_8_42_2
  doi: 10.1021/ja111083x
– ident: e_1_2_8_1_2
  doi: 10.1039/b511119f
– ident: e_1_2_8_1_5
  doi: 10.1021/cm401737s
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevB.47.4174
– ident: e_1_2_8_4_3
  doi: 10.1021/acs.chemmater.0c02929
– ident: e_1_2_8_29_4
  doi: 10.1021/ar1001318
– ident: e_1_2_8_36_2
  doi: 10.1021/ja400500m
– ident: e_1_2_8_21_2
  doi: 10.1016/j.ccr.2016.11.012
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevB.86.014109
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.202215827
– ident: e_1_2_8_24_1
  doi: 10.1063/1.4906427
– ident: e_1_2_8_37_1
  doi: 10.1002/zaac.19552790502
– ident: e_1_2_8_23_1
  doi: 10.1063/1.4812323
– ident: e_1_2_8_33_1
  doi: 10.1039/C5DT03215F
– ident: e_1_2_8_44_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_6_3
  doi: 10.1016/j.ccr.2021.214154
– ident: e_1_2_8_23_4
  doi: 10.1016/j.ensm.2021.10.029
– ident: e_1_2_8_2_2
  doi: 10.1016/j.ccr.2018.09.002
– ident: e_1_2_8_20_1
  doi: 10.1002/adom.202001856
– ident: e_1_2_8_35_1
  doi: 10.1063/1.1656857
– ident: e_1_2_8_38_1
  doi: 10.1021/acsami.1c06933
– ident: e_1_2_8_16_1
  doi: 10.1039/c2dt12493a
– ident: e_1_2_8_6_6
  doi: 10.1021/cg8010579
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.inorgchem.5b01859
– ident: e_1_2_8_1_4
  doi: 10.1021/acs.accounts.7b00033
– ident: e_1_2_8_3_5
  doi: 10.1021/acs.chemmater.1c01982
– ident: e_1_2_8_30_3
  doi: 10.1103/PhysRevB.40.1329
– ident: e_1_2_8_29_1
  doi: 10.1063/1.2210932
– ident: e_1_2_8_3_4
  doi: 10.1002/anie.202002291
– ident: e_1_2_8_12_2
  doi: 10.1039/C7DT90127E
– ident: e_1_2_8_1_1
  doi: 10.1021/acs.chemrev.0c00796
– ident: e_1_2_8_2_3
  doi: 10.1021/jacs.6b03734
– ident: e_1_2_8_3_3
  doi: 10.1021/jacs.1c03930
– ident: e_1_2_8_13_1
  doi: 10.1039/C7QI00004A
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ccr.2019.213150
– ident: e_1_2_8_6_1
  doi: 10.1016/j.ccr.2015.01.005
– ident: e_1_2_8_6_4
  doi: 10.1021/acs.cgd.7b00214
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_41_1
  doi: 10.1524/zkri.220.5.567.65075
– ident: e_1_2_8_22_1
  doi: 10.1038/s41578-019-0101-8
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.cgd.0c01234
– ident: e_1_2_8_3_6
  doi: 10.1016/j.mtphys.2021.100569
– ident: e_1_2_8_32_1
  doi: 10.1107/S0108768185002063
– ident: e_1_2_8_39_1
  doi: 10.3390/ma14206166
– ident: e_1_2_8_12_1
  doi: 10.1039/C5DT01635E
– ident: e_1_2_8_3_2
  doi: 10.1088/0268-1242/31/12/123001
– ident: e_1_2_8_24_2
  doi: 10.1021/acs.chemmater.0c02583
– ident: e_1_2_8_25_1
  doi: 10.1109/JQE.1976.1069169
– ident: e_1_2_8_31_2
  doi: 10.1021/acsami.0c15728
– ident: e_1_2_8_36_1
  doi: 10.1364/AO.14.001380
– ident: e_1_2_8_1_7
  doi: 10.1002/anie.201700540
– ident: e_1_2_8_36_3
  doi: 10.1021/jacs.8b10009
– ident: e_1_2_8_14_1
  doi: 10.1021/ic300373z
– ident: e_1_2_8_25_3
  doi: 10.1021/acs.inorgchem.8b01174
SSID ssj0001537418
Score 2.5136523
Snippet Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like...
Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite-like...
Abstract Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial...
Abstract Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2106120
SubjectTerms alkaline earth metals
chalcogenide
chalcopyrite‐like structures
Crystal structure
Design
Genetic algorithms
Lasers
nonlinear optical materials
Optical properties
Spectrum analysis
tetrahedral units
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA7SJ1_Eeh1tSwRBfRg6m9skj23ZUsWtYi30bcht2NIyu6yt0Dd_gj-hv62_xHOS2WEXhb74OEmGhHNJvpOcfCHkLbPgRoq3pak8BCijIEvtlCk1M8G0EOWqgPsdk2N1dCo-ncmzlae-MCcs0wNnwe0y42CN88HVnAtZVQ7wL3cyhpFqndf5mm9lVoKpfD-YIy3LkqWxYrs2_ER2boYhED7uvbIKJbL-fyHMvxMlVwFsWoEOH5NHPXSke3nIm-RB7J6Qzd45f9D3PYP0h6fkFpRPwdMh6k2Cp7OWniSi2OtFpF8XeDiTym0X6Hjg-KcAYCkAQpoT84Zf9y4vAK3f_fo9BnFN6SQCYIcvJLayAFIDPZjaSz-b3ywAv0LF5_OLSD9-o8eZhsMu6Jd52jKnE3uVLP4ZOT0cfz84KvunGEovmRGl96pWCvnBvPZ1aywgFyjTHOMzr1ohg5ZS15jywQLMsJY5IaXVIgrVjix_Tja6WRdfEhpCxQPTTkuAB9ZIU1nDnfBWjVqrPSvIu6Vqmnlm3GgytzJrUInNoMSC7KPmhlbIlJ0KwH6a3n6a--ynIFtLvTe9-0IXSsE8BlgO-ngzVIPj4WmK7eLsGtsgryNMYHVBXmQzGUaCm2kCoGhB6jUDWhvqek13Pk3k3gZAhTaqIGUytXtE0AB4OeG6Fq_-hyxek4cMb3ekfM4tsgGGGbcBc125neRefwB3uyt5
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LbtQwFLVgumGDKM_QgoyEBCyiZhzbsVeoraYqiBmqlkrdRX4kTNUqGdKHxI5P4BP4Nr6Eex1P6AgEy9iJ8rjn2ude3xwT8pIZcCOZ16nOHAQoYy9SZaVOFdNe1xDlSo_5julM7h_z9yfiJCbcLmJZ5XJMDAO1bx3myLdgIgFowfSavV18SXHXKFxdjVto3CZrDCKFbETWdiazg8PfWRaRozzLUq0xY1vGX6NKN8NQCDf5vjEbBdH-vzHNPwsmbxLZMBPt3SN3I4Wk273N18mtqrlP1qOTXtDXUUn6zQPyA0BAweMh-g0GoG1Nj4Jg7FVX0YMOF2lCu2k8nQxa_xSILAViSPsCveHS7fMzYO0_v32fAN7mdFoBcYcjFLgyQFY93Z2bc9cuvnbwzaDjw-lZRd8d0lkvx2E6-nERUud0ai4D8h-S473Jp939NG7JkDrBNE-dk4WUqBPmlCtqbYDBQJvKMU5zsubCKyFUgaUfzMNIa5jlQhjFKy7rsckfkVHTNtUTQr3Pcs-UVQJogtFCZ0bnljsjx7VRjiXk1dI05aJX3ih7jWVWohHLwYgJ2UHLDWehYnZoaLvPZXTAkmkLXMl5W-Q5F1lmIY7Kraj8WNbWKZWQzaXdy-jGcIsBdAl5MXSDA-Kqimmq9grPQX1HGMiKhDzuYTI8CSbVOFDShBQrAFp51NWe5nQeRL41kAulZULSALX_fIISSMxRrgr-9N-vsUHuMPx_I1RsbpIRQK56Bqzq0j6PrvMLQYYksQ
  priority: 102
  providerName: ProQuest
– databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTtwwFLUquummKvSVFipXqtR2EZHxK_YS0CBadSgqRWIX-ZEwCJSMAlTqjk_gE_ptfEnvdTKBqJWqLmM7seV7j3PutXNCyDtmAUaKV6nJPAQokyBT7ZRJNTPBVBDlqoD5jtm-2jsSn4_l8b2v-Dt9iCHhhsiI6zUC3LqLzTvRUBt-oNw2w5iGQdD-EGVjUD2fiYO7LIvkKM-Cf5iDflOuhVgqN2Zsc_yI0ZspCvj_jXX-eXjyPqmNb6XdJ-RxTyfpVmf_VfKgrNfIag_YC_qhV5X--JT8AoeggH6IhKMxaFPRwygee9WW9KDFDZtYbutAp4PuPwVSS4Ek0u6w3nDr1vkZMPjb65sp-N6czkog8XCFYlcWpjbQnbk9983iZwucFiq-nJ6V9NM3ut9NvW3p10VMo9OZvYwoeEaOdqffd_bS_vcMqZfMiNR7lSuFmmFe-7wyFtgMlGmOMZtXlZBBS6lzPAbCAqy6ljkhpdWiFKqaWP6crNRNXb4kNISMB6adlkAZrJEms4Y74a2aVFZ7lpD3S9MUi06Fo-j0llmBRiwGIyZkGy03tEL17FjQtCdFD8aCGQe8yQeXcy5kljmIqbiTZZioynmtE7K-tHvRQxq6UArWNuB30MfboRrAiDssti6bK2yDWo-wqOUJedG5yTASTLAJoKcJyUcONBrquKY-nUfBbwNEQxuVkDS62j-moABCc8h1Ll79Z_vX5BHDjzvicc51sgI-WG4A5bp0byKqfgORKie9
  priority: 102
  providerName: Wiley-Blackwell
Title The Combination of Structure Prediction and Experiment for the Exploration of Alkali‐Earth Metal‐Contained Chalcopyrite‐Like IR Nonlinear Optical Material
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202106120
https://www.ncbi.nlm.nih.gov/pubmed/35404514
https://www.proquest.com/docview/2668703890
https://search.proquest.com/docview/2649251967
https://pubmed.ncbi.nlm.nih.gov/PMC9130896
https://doaj.org/article/29b431cdb7334500b7473b5ed16fbc88
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFD5axw03iPEbGJWRkICLrKljO_blVnUaiJZqY9LuIv8ktFqXVmVD4o5H4BF4Np6EY-dHq0BC4jJ2Ils-37G_4xx_BnhFNbqRSMtYJRYDlKHjsTRCxZIqp0qMcoXz-x2TqTg5Z-8v-MUO8PYsTEjat2ZxUC2vDqrFPORWrq_soM0TG8wmI4UTr1Ri0IMeAvRWiF4fDU69Iksr0JjQgXZfvTA39dEP9Ve_-b0Oxodsay0Kkv1_45l_pkveprFhHTq-D_caAkkO647uwU5RPYC9xkW_kDeNjvTbh_ATIUDQ3zH2DcNPViU5C3KxN5uCzDb-F00o15Uj407pnyCNJUgLSZ2e1316uLxEzv7r-48xDtKcTAqk7fjk5a00UlVHRnO9tKv1tw2yWKz4sLgsyLtTMq3FOPSGfFyHjXMy0dcB94_g_Hj8aXQSNxcyxJZTxWJrRSaEVwmz0mal0shfsEymPkqzomTcSc5l5hM_qMN5VlPDONeSFUyUQ50-ht1qVRVPgTiXpI5KIzmSBK24SrRKDbNaDEstLY3gdWuafF3rbuS1wjLNvT3zzp4RHHnLdW95vexQsNp8zhvU5FQZZErWmSxNGU8Sg1FUanjhhqI0VsoI9lu7540TYxNC4GyGjA7beNlVo_v5fyq6KlY3_h2v7ojTWBbBkxomXU9amEWQbQFoq6vbNYj4IPHdIDyCOEDtH0OQI4U5S2XGnv13S8_hLvUHO0Iq5z7sIhqLF0i3rk0fepTN-nDnaDydnfbDpkU_uNxvzQ4vpA
link.rule.ids 230,315,730,783,787,867,888,2109,11574,21400,27936,27937,33756,33757,43817,46064,46488,50826,50935,53804,53806,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagPcAFUX5DCxgJCThEzdqxY59QW221hd2l6o_UW-TYCVu1SrZpi8SNR-AReDaehBnHG7oCwTF2ovzMN_Y348lnQl4zA24keRXrxEKAMnAiVoXUsWLa6QqiXOkw3zGZytFx-uFEnISE22Uoq1yMiX6gdo3FHPkmTCQALZhek_fzixh3jcLV1bCFxm2yilJVEHytbg-n-we_syyCozzLQq0xYZvGfUGVboahEG7yfWM28qL9f2OafxZM3iSyfibavU_uBQpJtzqbr5FbZf2ArAUnvaRvg5L0u4fkB4CAgsdD9OsNQJuKHnrB2Ou2pPstLtL4dlM7Ouy1_ikQWQrEkHYFev2lW-dnwNp_fvs-BLzN6KQE4g5HKHBlgKw6ujMz57aZf23hm0HH-PSspHsHdNrJcZiWfpr71DmdmCuP_EfkeHd4tDOKw5YMsRVMp7G1MpMSdcKsslmlDTAYaFMc4zQrq1Q4JYTKsPSDORhpDStSIYxKy1RWA8Mfk5W6qcunhDqXcMdUoQTQBKOFTozmRWqNHFRGWRaRNwvT5PNOeSPvNJZZjkbMeyNGZBst15-Fitm-oWk_58EBc6YL4ErWFRnnqUiSAuIoXojSDWRVWKUisrGwex7cGG7Rgy4ir_pucEBcVTF12VzjOajvCANZFpEnHUz6J8GkWgqUNCLZEoCWHnW5pz6deZFvDeRCaRmR2EPtP58gBxJzyFWWPvv3a7wkd0ZHk3E-3pt-XCd3Gf7L4as3N8gKwK98DgzrqngR3OgXToEnqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LbtQwFLVgKiE2iPIMLWAkJGARTcav2CvUlhm10BlGLZW6i_xImKpVMp22SOz4BD6Bb-NLuHY8oSMQLGMnyuPeY597fXOM0EuiAUaCVqnKLAQoA8dTaYRKJVFOVRDlCufzHeOJ2D1i74_5cax_uohllcsxMQzUrrE-R96HiQRcC6bXrF_Fsojpu9Hb-Xnqd5DyK61xO42baC1ngmY9tLY9nEwPfmdcOPVSLUvlxoz0tfviFbuJD4v8ht_XZqYg4P831vln8eR1UhtmpdFddCfSSbzV2n8d3Sjre2g9AvYCv46q0m_uox_gEBjQD5FwMAZuKnwYxGOvFiWeLvyCTWjXtcPDTvcfA6nFQBJxW6zXXbp1dgoM_ue370PwvRkel0Di4ciLXWkgrg7vzPSZbeZfF_DNoGP_5LTEewd40kpz6AX-OA9pdDzWlwEFD9DRaPhpZzeN2zOklhPFUmtFLoTXDLPS5pXSwGagTVIfs1lRMe4k5zL3ZSDEwairiWGca8lKJqqBpg9Rr27q8jHCzmXUEWkkB8qgFVeZVtQwq8Wg0tKSBL1amqaYtyocRau3TApvxKIzYoK2veW6s7x6dmhoFp-LCMaCKAO8yTqTU8p4lhmIqajhpRuIylgpE7S5tHsRIQ236BwwQS-6bgCjX2HRddlc-XO81iMManmCHrVu0j2JT7AxoKcJylccaOVRV3vqk1kQ_FZANKQSCUqDq_3nExRAaA6pzNmTf7_Gc3QLEFTs700-bKDbxP_WEQo5N1EPvK98CmTr0jyLKPoF_kkr2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Combination+of+Structure+Prediction+and+Experiment+for+the+Exploration+of+Alkali%E2%80%90Earth+Metal%E2%80%90Contained+Chalcopyrite%E2%80%90Like+IR+Nonlinear+Optical+Material&rft.jtitle=Advanced+science&rft.au=Wang%2C+Peng&rft.au=Chu%2C+Yu&rft.au=Tudi%2C+Abudukadi&rft.au=Xie%2C+Congwei&rft.date=2022-05-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=9&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202106120&rft.externalDBID=10.1002%252Fadvs.202106120&rft.externalDocID=ADVS3874
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon