The Combination of Structure Prediction and Experiment for the Exploration of Alkali‐Earth Metal‐Contained Chalcopyrite‐Like IR Nonlinear Optical Material

Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO mat...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 9; no. 15; pp. e2106120 - n/a
Main Authors Wang, Peng, Chu, Yu, Tudi, Abudukadi, Xie, Congwei, Yang, Zhihua, Pan, Shilie, Li, Junjie
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.05.2022
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite‐like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect‐CL (DCL) alkali‐earth metal (AEM) selenide IR NLO material, DCL‐MgGa2Se4, has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type‐I phase‐matching (PM) behavior and a wide IR transparent range. The results indicate that DCL‐MgGa2Se4 is a promising mid‐to‐far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy. The first defect‐chalcopyrite‐like alkali‐earth metal selenide IR NLO material DCL‐MgGa2Se4 with balanced SHG response and band gap is rationally designed and fabricated by a calculation and experiment combined strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202106120