Combined Single‐Cell and Spatial Transcriptomics Reveal the Metabolic Evolvement of Breast Cancer during Early Dissemination

Breast cancer is now the most frequently diagnosed malignancy, and metastasis remains the leading cause of death in breast cancer. However, little is known about the dynamic changes during the evolvement of dissemination. In this study, 65 968 cells from four patients with breast cancer and paired m...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 10; no. 6; pp. e2205395 - n/a
Main Authors Liu, Yi‐Ming, Ge, Jing‐Yu, Chen, Yu‐Fei, Liu, Tong, Chen, Lie, Liu, Cui‐Cui, Ma, Ding, Chen, Yi‐Yu, Cai, Yu‐Wen, Xu, Ying‐Ying, Shao, Zhi‐Ming, Yu, Ke‐Da
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.02.2023
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Breast cancer is now the most frequently diagnosed malignancy, and metastasis remains the leading cause of death in breast cancer. However, little is known about the dynamic changes during the evolvement of dissemination. In this study, 65 968 cells from four patients with breast cancer and paired metastatic axillary lymph nodes are profiled using single‐cell RNA sequencing (scRNA‐seq) and spatial transcriptomics. A disseminated cancer cell cluster with high levels of oxidative phosphorylation (OXPHOS), including the upregulation of cytochrome C oxidase subunit 6C and dehydrogenase/reductase 2, is identified. The transition between glycolysis and OXPHOS when dissemination initiates is noticed. Furthermore, this distinct cell cluster is distributed along the tumor's leading edge. The findings here are verified in three different cohorts of breast cancer patients and an external scRNA‐seq dataset, which includes eight patients with breast cancer and paired metastatic axillary lymph nodes. This work describes the dynamic metabolic evolvement of early disseminated breast cancer and reveals a switch between glycolysis and OXPHOS in breast cancer cells as the early event during lymph node metastasis. By single‐cell RNA sequencing and spatial transcriptomics, the early early‐disseminated breast cancer cells are found to travel from the border of primary tumor to axillary lymph nodes. During this metastasis, a switch between glycolysis and oxidative phosphorylation occurs in early disseminated breast cancer cells, indicating an interesting dynamic metabolic evolvement.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202205395