Dynamics and Ordering in Mixed Model Membranes of Dimyristoylphosphatidylcholine and Dimyristoylphosphatidylserine: A 250-GHz Electron Spin Resonance Study Using Cholestane

We report here on a 250-GHz electron spin resonance (ESR) study of macroscopically aligned model membranes composed of mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS), utilizing the nixtroxide-labeled cholesterol analog cholestane (CSL). Two clearly resolve...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 75; no. 5; pp. 2532 - 2546
Main Authors Barnes, Jeff P., Freed, Jack H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report here on a 250-GHz electron spin resonance (ESR) study of macroscopically aligned model membranes composed of mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS), utilizing the nixtroxide-labeled cholesterol analog cholestane (CSL). Two clearly resolved spectral components, distinct in both their ordering and dynamics, are resolved. The major component in membranes composed mostly of DMPC shows typical characteristics, with the long axis of CSL parallel to the bilayer normal with slow (10 6 ≤ R ≤ 10 7s −1) rotational diffusion rates, as expected for cholesterol. The second component grows in as the mole fraction of DMPS increases. A detailed analysis shows that CSL senses a local, strongly biaxial environment. Our results imply that the inefficient packing between cholesterol and DMPS occurs probably because of the strong interactions between the PS headgroups, which provide the local biaxiality. Such a packing of the headgroups has been predicted by molecular dynamics simulations but had not been observed experimentally. The analysis of these spectral components was greatly aided by the excellent orientational resolution provided by the 250-GHz spectra. This enabled the key qualitative features of this interpretation to be “read” off the spectra before the detailed analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(98)77698-2