Identification of S-Nitrosylation Motifs by Site-Specific Mapping of the S-Nitrosocysteine Proteome in Human Vascular Smooth Muscle Cells
S-nitrosylation, the selective modification of cysteine residues in proteins to form S-nitrosocysteine, is a major emerging mechanism by which nitric oxide acts as a signaling molecule. Even though nitric oxide is intimately involved in the regulation of vascular smooth muscle cell functions, the po...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 103; no. 19; pp. 7420 - 7425 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
09.05.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | S-nitrosylation, the selective modification of cysteine residues in proteins to form S-nitrosocysteine, is a major emerging mechanism by which nitric oxide acts as a signaling molecule. Even though nitric oxide is intimately involved in the regulation of vascular smooth muscle cell functions, the potential protein targets for nitric oxide modification as well as structural features that underlie the specificity of protein S-nitrosocysteine formation in these cells remain unknown. Therefore, we used a proteomic approach using selective peptide capturing and site-specific adduct mapping to identify the targets of S-nitrosylation in human aortic smooth muscle cells upon exposure to S-nitrosocysteine and propylamine propylamine NONOate. This strategy identified 20 unique S-nitrosocysteine-containing peptides belonging to 18 proteins including cytoskeletal proteins, chaperones, proteins of the translational machinery, vesicular transport, and signaling. Sequence analysis of the S-nitrosocysteine-containing peptides revealed the presence of acid/base motifs, as well as hydrophobic motifs surrounding the identified cysteine residues. High-resolution immunogold electron microscopy supported the cellular localization of several of these proteins. Interestingly, seven of the 18 proteins identified are localized within the ER/Golgi complex, suggesting a role for S-nitrosylation in membrane trafficking and ER stress response in vascular smooth muscle. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Edited by Louis J. Ignarro, University of California School of Medicine, Los Angeles, CA, and approved March 22, 2006 Author contributions: T.M.G., R.H., M.K.D., D.C.L., and H.I. designed research; T.M.G., I.P., H.F.G.H., and M.K.D. performed research; T.M.G., I.P., H.F.G.H., D.C.L., and H.I. analyzed data; and T.M.G., H.F.G.H., D.C.L., and H.I. wrote the paper. |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0600729103 |