The effect of APH treatment on surface bonding and osseointegration of Ti-6Al-7Nb implants: An in vitro and in vivo study

This study investigated the effects of anodization-cyclic precalcification-heat (APH) treatment on the bonding ability of Ca-P coating to the parent metal and osseointegration of Ti-6Al-7Nb implants. Eighteen Ti-6Al-7Nb discs, 9 untreated and 9 APH-treated, were cultured with osteoblast cells in vit...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part B, Applied biomaterials Vol. 103; no. 3; pp. 641 - 648
Main Authors Nguyen, Thuy-Duong Thi, Moon, So-Hee, Oh, Tae-Ju, Park, Il-Song, Lee, Min-Ho, Bae, Tae-Sung
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.04.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study investigated the effects of anodization-cyclic precalcification-heat (APH) treatment on the bonding ability of Ca-P coating to the parent metal and osseointegration of Ti-6Al-7Nb implants. Eighteen Ti-6Al-7Nb discs, 9 untreated and 9 APH-treated, were cultured with osteoblast cells in vitro, and the cellular differentiation ability was assayed at 1, 2, and 3 weeks. For in vivo testing, 28 Ti-6Al-7Nb implants (14 implants of each group) were inserted to rat tibias, and after each 4 and 6 weeks of implantation, bone bonding, and osseointegration were evaluated through removal torque and histological analysis. Osteoblast-culturing showed twice as much of the alkaline phosphatase activity on the treated surface at 3 weeks than on the untreated surface (p < 0.05). The treated implants exhibited higher removal torque values than the untreated ones (15.5 vs. 1.8 Ncm at 4 weeks and 19.7 vs. 2.6 Ncm at 6 weeks, p < 0.05). Moreover, the excellent bonding quality of coats was confirmed by the existence of cohesive fractures on the surface of removed APH implants (field emission scanning electron microscopy and histological observation). Within the limits of this study, it can be concluded that the APH treatment significantly enhanced osseointegration of the Ti-6Al-7Nb implant, with the stable bonding between the coating and the implant surface.
Bibliography:ArticleID:JBMB33210
ark:/67375/WNG-SMMRD12D-9
National Research Foundation of Korea (NRF), Ministry of Education, Science and Technology, Korea - No. 2010-0013251, 2012-012671
istex:0ACD3C69F9274510EF8FBC5BA89D5A245BBB10D7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1552-4973
1552-4981
DOI:10.1002/jbm.b.33210