Proteomics studies of post-translational modifications in plants
Post-translational modifications of proteins greatly increase protein complexity and dynamics, co-ordinating the intricate regulation of biological events. The global identification of post-translational modifications is a difficult task that is currently accelerated by advances in proteomics techni...
Saved in:
Published in | Journal of experimental botany Vol. 57; no. 7; pp. 1547 - 1551 |
---|---|
Main Authors | , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Oxford
Oxford University Press
01.04.2006
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Post-translational modifications of proteins greatly increase protein complexity and dynamics, co-ordinating the intricate regulation of biological events. The global identification of post-translational modifications is a difficult task that is currently accelerated by advances in proteomics techniques. There has been significant development in sample preparation methods and mass spectrometry instrumentation. To reduce the complexity and to increase the amount of modified proteins available for analysis, proteins are usually subjected to prefractionation such as chromatographic purification and affinity enrichment. In this review, the post-translational modification studies in plants are summarized. The sample preparation strategies applied to each study are also described. These include affinity-based enrichment methods, immobilized metal affinity chromatography and immunoprecipitation used for phosphorylation and ubiquitination studies, respectively, and the phase partitioning approach for glycosylphosphatidylinositol modification studies. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 0022-0957 1460-2431 |
DOI: | 10.1093/jxb/erj137 |