Glycolysis and Oxidative Phosphorylation Play Critical Roles in Natural Killer Cell Receptor-Mediated Natural Killer Cell Functions
Natural killer (NK) cells are innate lymphocytes that directly kill tumor and pathogen-infected cells upon activation by cytokines and NK cell receptors (NKRs) without previous sensitization. It is known that cell metabolism affects the differentiation and effector functions of immune cells. For ins...
Saved in:
Published in | Frontiers in immunology Vol. 11; p. 202 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
20.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Natural killer (NK) cells are innate lymphocytes that directly kill tumor and pathogen-infected cells upon activation by cytokines and NK cell receptors (NKRs) without previous sensitization. It is known that cell metabolism affects the differentiation and effector functions of immune cells. For instance, interleukin-2 and interleukin-15 treatment increases glycolysis and oxidative phosphorylation (OXPHOS) in NK cells to support their effector functions. However, little is known about the metabolic reprogramming of human NK cells upon their activation by NKRs. In this study, we investigated the metabolism of NK cells stimulated via NKRs. We found that NK cells upregulated glycolysis and OXPHOS in response to anti-CD16 antibody or NKG2D ligand engagement. Inhibition of either glycolysis or OXPHOS impaired NK cell production of interferon-γ. Interestingly, inhibition of glycolysis but not OXPHOS decreased NK cell killing and dampened NK cell degranulation and Fas ligand expression, suggesting that glycolysis is more critical for NKR-activated cell cytotoxicity. Thus, our study provides insight into understanding the metabolic requirements underlying different effector functions of human NK cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Eleanor Riley, University of Edinburgh, United Kingdom Reviewed by: Alexander Steinle, Goethe University Frankfurt, Germany; Subramaniam Malarkannan, Medical College of Wisconsin, United States This article was submitted to NK and Innate Lymphoid Cell Biology, a section of the journal Frontiers in Immunology |
ISSN: | 1664-3224 1664-3224 |
DOI: | 10.3389/fimmu.2020.00202 |