Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds
How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width—the mediolateral (transverse) dist...
Saved in:
Published in | Journal of the Royal Society interface Vol. 14; no. 132; p. 20170276 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
01.07.2017
The Royal Society Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width—the mediolateral (transverse) distance between successive footfalls—was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods (p < 0.001), as well as the five tallest bird species studied (p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk–run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.3816589 |
ISSN: | 1742-5689 1742-5662 |
DOI: | 10.1098/rsif.2017.0276 |