Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

Qingre Liyan decoction (QYD), a Traditional Chinese medicine, and N-acetyl cysteine (NAC) have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD) at the cellular and transcriptional level. A validated organotyp...

Full description

Saved in:
Bibliographic Details
Published inEvidence-based complementary and alternative medicine Vol. 2015; no. 2015; pp. 1 - 10
Main Authors Chow, Moses Sing Sum, Pon, Doreen, Orlando, Robert, Mulamalla, Hari Chandana, Parsa, Cyrus, Kondapalli, Lavanya, Lambros, Maria P., Huang, Ying
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2015
John Wiley & Sons, Inc
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Qingre Liyan decoction (QYD), a Traditional Chinese medicine, and N-acetyl cysteine (NAC) have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD) at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D) cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E) and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1), protective genes (EGFR and PPARD), and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs). NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Kwok N. Leung
ISSN:1741-427X
1741-4288
DOI:10.1155/2015/425760