Global diversity and distribution of antibiotic resistance genes in human wastewater treatment systems
Antibiotic resistance poses a significant threat to human health, and wastewater treatment plants (WWTPs) are important reservoirs of antibiotic resistance genes (ARGs). Here, we analyze the antibiotic resistomes of 226 activated sludge samples from 142 WWTPs across six continents, using a consisten...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 4006 - 14 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.04.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Antibiotic resistance poses a significant threat to human health, and wastewater treatment plants (WWTPs) are important reservoirs of antibiotic resistance genes (ARGs). Here, we analyze the antibiotic resistomes of 226 activated sludge samples from 142 WWTPs across six continents, using a consistent pipeline for sample collection, DNA sequencing and analysis. We find that ARGs are diverse and similarly abundant, with a core set of 20 ARGs present in all WWTPs. ARG composition differs across continents and is distinct from that of the human gut and the oceans. ARG composition strongly correlates with bacterial taxonomic composition, with
Chloroflexi
,
Acidobacteria
and
Deltaproteobacteria
being the major carriers. ARG abundance positively correlates with the presence of mobile genetic elements, and 57% of the 1112 recovered high-quality genomes possess putatively mobile ARGs. Resistome variations appear to be driven by a complex combination of stochastic processes and deterministic abiotic factors.
Wastewater treatment plants are important reservoirs of antibiotic resistance genes (ARGs). Here, the authors analyze ARGs in a global collection of samples from wastewater treatment plants across six continents, providing insights into biotic and abiotic mechanisms that appear to control ARG diversity and distribution. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-025-59019-3 |