Integrated Cognitive Architecture for Robot Learning of Action and Language
The manner in which humans learn, plan, and decide actions is a very compelling subject. Moreover, the mechanism behind high-level cognitive functions, such as action planning, language understanding, and logical thinking, has not yet been fully implemented in robotics. In this paper, we propose a f...
Saved in:
Published in | Frontiers in robotics and AI Vol. 6; p. 131 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
29.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The manner in which humans learn, plan, and decide actions is a very compelling subject. Moreover, the mechanism behind high-level cognitive functions, such as action planning, language understanding, and logical thinking, has not yet been fully implemented in robotics. In this paper, we propose a framework for the simultaneously comprehension of concepts, actions, and language as a first step toward this goal. This can be achieved by integrating various cognitive modules and leveraging mainly multimodal categorization by using multilayered multimodal latent Dirichlet allocation (mMLDA). The integration of reinforcement learning and mMLDA enables actions based on understanding. Furthermore, the mMLDA, in conjunction with grammar learning and based on the Bayesian hidden Markov model (BHMM), allows the robot to verbalize its own actions and understand user utterances. We verify the potential of the proposed architecture through experiments using a real robot. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Francisco Bellas, University of a Coruña, Spain; Davide Marocco, University of Naples Federico II, Italy Edited by: Giovanni Luca Christian Masala, Manchester Metropolitan University, United Kingdom This article was submitted to Computational Intelligence in Robotics, a section of the journal Frontiers in Robotics and AI |
ISSN: | 2296-9144 2296-9144 |
DOI: | 10.3389/frobt.2019.00131 |