Identification of atherosclerosis-associated conformational heat shock protein 60 epitopes by phage display and structural alignment

Abstract Autoimmune reactions to HSP60 are believed to play a key role during development of early atherosclerosis. Due to the high degree of phylogenetic conservation between microbial and human HSP60, bacterial infections might be responsible for inducing cross-reactivity to self HSP60, which is e...

Full description

Saved in:
Bibliographic Details
Published inAtherosclerosis Vol. 194; no. 1; pp. 79 - 87
Main Authors Perschinka, Hannes, Wellenzohn, Bernd, Parson, Walther, van der Zee, Ruurd, Willeit, Johann, Kiechl, Stefan, Wick, Georg
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ireland Ltd 01.09.2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Autoimmune reactions to HSP60 are believed to play a key role during development of early atherosclerosis. Due to the high degree of phylogenetic conservation between microbial and human HSP60, bacterial infections might be responsible for inducing cross-reactivity to self HSP60, which is expressed on the surface of arterial endothelial cells stressed by classical atherosclerosis risk factors. Conformational epitopes recognized by polyclonal anti-mycobacterial HSP60 antibodies from subjects with atherosclerosis were identified using a phage displayed random library of cyclic constrained 7mer peptides. After five rounds of selection, DNA sequencing of strongly binding clones revealed that one peptide motif (CIGSPSTNC) was present in 64% of all clones, and a second motif (CSFHYQNRC) in 14%. Using a newly developed method for structural alignment of small constrained peptides onto a protein surface, we located the motif present in 14% of all clones on the surface of mycobacterial HSP60. The motif present in 64% of all clones was found on the surface of mycobacterial HSP60 as well as in the homologous region of human HSP60, which makes this epitope a promising candidate for further investigations on cross-reactive epitopes involved in early atherogenesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9150
1879-1484
DOI:10.1016/j.atherosclerosis.2006.09.028