Coherent behavior of neuromuscular oscillations between isometrically interacting subjects: experimental study utilizing wavelet coherence analysis of mechanomyographic and mechanotendographic signals

Previous research has shown that electrical muscle activity is able to synchronize between muscles of one subject. The ability to synchronize the mechanical muscle oscillations measured by Mechanomyography (MMG) is not described sufficiently. Likewise, the behavior of myofascial oscillations was not...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 15456 - 10
Main Authors Schaefer, Laura V., Bittmann, Frank N.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.10.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous research has shown that electrical muscle activity is able to synchronize between muscles of one subject. The ability to synchronize the mechanical muscle oscillations measured by Mechanomyography (MMG) is not described sufficiently. Likewise, the behavior of myofascial oscillations was not considered yet during muscular interaction of two human subjects. The purpose of this study is to investigate the myofascial oscillations intra- and interpersonally. For this the mechanical muscle oscillations of the triceps and the abdominal external oblique muscles were measured by MMG and the triceps tendon was measured by mechanotendography (MTG) during isometric interaction of two subjects (n = 20) performed at 80% of the MVC using their arm extensors. The coherence of MMG/MTG-signals was analyzed with coherence wavelet transform and was compared with randomly matched signal pairs. Each signal pairing shows significant coherent behavior. Averagely, the coherent phases of n = 485 real pairings last over 82 ± 39 % of the total duration time of the isometric interaction. Coherent phases of randomly matched signal pairs take 21 ± 12 % of the total duration time (n = 39). The difference between real vs. randomly matched pairs is significant (U = 113.0, p = 0.000, r = 0.73). The results show that the neuromuscular system seems to be able to synchronize to another neuromuscular system during muscular interaction and generate a coherent behavior of the mechanical muscular oscillations. Potential explanatory approaches are discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-33579-5