Integrated Population Modeling Provides the First Empirical Estimates of Vital Rates and Abundance for Polar Bears in the Chukchi Sea

Large carnivores are imperiled globally, and characteristics making them vulnerable to extinction (e.g., low densities and expansive ranges) also make it difficult to estimate demographic parameters needed for management. Here we develop an integrated population model to analyze capture-recapture, r...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 16780 - 12
Main Authors Regehr, Eric V., Hostetter, Nathan J., Wilson, Ryan R., Rode, Karyn D., Martin, Michelle St, Converse, Sarah J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.11.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Large carnivores are imperiled globally, and characteristics making them vulnerable to extinction (e.g., low densities and expansive ranges) also make it difficult to estimate demographic parameters needed for management. Here we develop an integrated population model to analyze capture-recapture, radiotelemetry, and count data for the Chukchi Sea subpopulation of polar bears ( Ursus maritimus ), 2008–2016. Our model addressed several challenges in capture-recapture studies for polar bears by including a multievent structure reflecting location and life history states, while accommodating state uncertainty. Female breeding probability was 0.83 (95% credible interval [CRI] = 0.71–0.90), with litter sizes of 2.18 (95% CRI = 1.71–2.82) for age-zero and 1.61 (95% CRI = 1.46–1.80) for age-one cubs. Total adult survival was 0.90 (95% CRI = 0.86–0.92) for females and 0.89 (95% CRI = 0.83–0.93) for males. Spring on-ice densities west of Alaska were 0.0030 bears/km 2 (95% CRI = 0.0016–0.0060), similar to 1980s-era density estimates although methodological differences complicate comparison. Abundance of the Chukchi Sea subpopulation, derived by extrapolating density from the study area using a spatially-explicit habitat metric, was 2,937 bears (95% CRI = 1,552–5,944). Our findings are consistent with other lines of evidence suggesting the Chukchi Sea subpopulation has been productive in recent years, although it is uncertain how long this will continue given sea-ice loss due to climate change.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-34824-7