Evolution of the TOR Pathway

The TOR kinase is a major regulator of growth in eukaryotes. Many components of the TOR pathway are implicated in cancer and metabolic diseases in humans. Analysis of the evolution of TOR and its pathway may provide fundamental insight into the evolution of growth regulation in eukaryotes and provid...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular evolution Vol. 73; no. 3-4; pp. 209 - 220
Main Authors van Dam, Teunis J. P., Zwartkruis, Fried J. T., Bos, Johannes L., Snel, Berend
Format Journal Article
LanguageEnglish
Published New York Springer-Verlag 01.10.2011
Springer Nature B.V
Springer Nature
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The TOR kinase is a major regulator of growth in eukaryotes. Many components of the TOR pathway are implicated in cancer and metabolic diseases in humans. Analysis of the evolution of TOR and its pathway may provide fundamental insight into the evolution of growth regulation in eukaryotes and provide a practical framework on which experimental evidence can be compared between species. Here we performed phylogenetic analyses on the components of the TOR pathway and determined their point of invention. We find that the two TOR complexes and a large part of the TOR pathway originated before the Last Eukaryotic Common Ancestor and form a core to which new inputs have been added during animal evolution. In addition, we provide insight into how duplications and sub-functionalization of the S6K, RSK, SGK and PKB kinases shaped the complexity of the TOR pathway. In yeast we identify novel AGC kinases that are orthologous to the S6 kinase. These results demonstrate how a vital signaling pathway can be both highly conserved and flexible in eukaryotes.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
AC02-05CH11231
USDOE Office of Science (SC)
ISSN:0022-2844
1432-1432
DOI:10.1007/s00239-011-9469-9