Involvement of the nuclear proteasome activator PA28γ in the cellular response to DNA double-strand breaks

The DNA damage response (DDR) is a complex signaling network that leads to damage repair while modulating numerous cellular processes. DNA double-strand breaks (DSBs)-a highly cytotoxic DNA lesion-activate this system most vigorously. The DSB response network is orchestrated by the ATM protein kinas...

Full description

Saved in:
Bibliographic Details
Published inCell cycle (Georgetown, Tex.) Vol. 10; no. 24; pp. 4300 - 4310
Main Authors Levy-Barda, Adva, Lerenthal, Yaniv, Davis, Anthony J., Chung, Young Min, Essers, Jeroen, Shao, Zhengping, van Vliet, Nicole, Chen, David J., Hu, Mickey C-T., Kanaar, Roland, Ziv, Yael, Shiloh, Yosef
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 15.12.2011
Landes Bioscience
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The DNA damage response (DDR) is a complex signaling network that leads to damage repair while modulating numerous cellular processes. DNA double-strand breaks (DSBs)-a highly cytotoxic DNA lesion-activate this system most vigorously. The DSB response network is orchestrated by the ATM protein kinase, which phosphorylates key players in its various branches. Proteasome-mediated protein degradation plays an important role in the proteome dynamics following DNA damage induction. Here, we identify the nuclear proteasome activator PA28γ (REGγ; PSME3) as a novel DDR player. PA28γ depletion leads to cellular radiomimetic sensitivity and a marked delay in DSB repair. Specifically, PA28γ deficiency abrogates the balance between the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair. Furthermore, PA28γ is found to be an ATM target, being recruited to the DNA damage sites and required for rapid accumulation of proteasomes at these sites. Our data reveal a novel ATM-PA28γ-proteasome axis of the DDR that is required for timely coordination of DSB repair.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1538-4101
1551-4005
DOI:10.4161/cc.10.24.18642