Inter-subject variability of muscle synergies during bench press in power lifters and untrained individuals

The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters (EXP) and nine untrained participants (UNT) completed three sets of eight repetitions at 60% of three repetition maximum in bench press. Muscle synergies were extract...

Full description

Saved in:
Bibliographic Details
Published inScandinavian journal of medicine & science in sports Vol. 25; no. 1; pp. 89 - 97
Main Authors Kristiansen, M., Madeleine, P., Hansen, E. A., Samani, A.
Format Journal Article
LanguageEnglish
Published Denmark Blackwell Publishing Ltd 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters (EXP) and nine untrained participants (UNT) completed three sets of eight repetitions at 60% of three repetition maximum in bench press. Muscle synergies were extracted from surface electromyography data of 21 bench press cycles using non‐negative matrix factorization algorithm. The synergy activation coefficient represents the relative contribution of the muscle synergy to the overall muscle activity pattern, while the muscle synergy vector represents the relative weighting of each muscle within each synergy. Describing more than 90% of the variability, two muscle synergies reflected the eccentric and concentric phase. The cross‐correlations (ρmax) for synergy activation coefficient 2 (concentric phase) were 0.83 [0.71;0.88] and 0.59 [0.49;0.77] [Median ρmax (25th;75th percentile)] (P = 0.001) in UNT and EXP, respectively. Median correlation coefficient (ρ) for muscle synergy vector 2 was 0.15 [−0.08;0.46] and 0.48 [0.02;0.70] (P = 0.03) in UNT and EXP, respectively. Thus, EXP showed larger inter‐subject variability than UNT in the synergy activation coefficient during the concentric phase, while the muscle synergy vectors were less variable in EXP. This points at the importance of a specialized neural strategy in elite bench press performance.
AbstractList The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters (EXP) and nine untrained participants (UNT) completed three sets of eight repetitions at 60% of three repetition maximum in bench press. Muscle synergies were extracted from surface electromyography data of 21 bench press cycles using non-negative matrix factorization algorithm. The synergy activation coefficient represents the relative contribution of the muscle synergy to the overall muscle activity pattern, while the muscle synergy vector represents the relative weighting of each muscle within each synergy. Describing more than 90% of the variability, two muscle synergies reflected the eccentric and concentric phase. The cross-correlations (ρ(max)) for synergy activation coefficient 2 (concentric phase) were 0.83 [0.71;0.88] and 0.59 [0.49;0.77] [Median ρ(max) (25th;75th percentile)] (P = 0.001) in UNT and EXP, respectively. Median correlation coefficient (ρ) for muscle synergy vector 2 was 0.15 [-0.08;0.46] and 0.48 [0.02;0.70] (P = 0.03) in UNT and EXP, respectively. Thus, EXP showed larger inter-subject variability than UNT in the synergy activation coefficient during the concentric phase, while the muscle synergy vectors were less variable in EXP. This points at the importance of a specialized neural strategy in elite bench press performance.
The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters ( EXP ) and nine untrained participants ( UNT ) completed three sets of eight repetitions at 60% of three repetition maximum in bench press. Muscle synergies were extracted from surface electromyography data of 21 bench press cycles using non‐negative matrix factorization algorithm. The synergy activation coefficient represents the relative contribution of the muscle synergy to the overall muscle activity pattern, while the muscle synergy vector represents the relative weighting of each muscle within each synergy. Describing more than 90% of the variability, two muscle synergies reflected the eccentric and concentric phase. The cross‐correlations (ρ max ) for synergy activation coefficient 2 (concentric phase) were 0.83 [0.71;0.88] and 0.59 [0.49;0.77] [Median ρ max (25th;75th percentile)] ( P  = 0.001) in UNT and EXP , respectively. Median correlation coefficient (ρ) for muscle synergy vector 2 was 0.15 [−0.08;0.46] and 0.48 [0.02;0.70] ( P  = 0.03) in UNT and EXP , respectively. Thus, EXP showed larger inter‐subject variability than UNT in the synergy activation coefficient during the concentric phase, while the muscle synergy vectors were less variable in EXP . This points at the importance of a specialized neural strategy in elite bench press performance.
The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters (EXP) and nine untrained participants (UNT) completed three sets of eight repetitions at 60% of three repetition maximum in bench press. Muscle synergies were extracted from surface electromyography data of 21 bench press cycles using non-negative matrix factorization algorithm. The synergy activation coefficient represents the relative contribution of the muscle synergy to the overall muscle activity pattern, while the muscle synergy vector represents the relative weighting of each muscle within each synergy. Describing more than 90% of the variability, two muscle synergies reflected the eccentric and concentric phase. The cross-correlations (ρmax) for synergy activation coefficient 2 (concentric phase) were 0.83 [0.71;0.88] and 0.59 [0.49;0.77] [Median ρmax (25th;75th percentile)] (P=0.001) in UNT and EXP, respectively. Median correlation coefficient (ρ) for muscle synergy vector 2 was 0.15 [-0.08;0.46] and 0.48 [0.02;0.70] (P=0.03) in UNT and EXP, respectively. Thus, EXP showed larger inter-subject variability than UNT in the synergy activation coefficient during the concentric phase, while the muscle synergy vectors were less variable in EXP. This points at the importance of a specialized neural strategy in elite bench press performance.
The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters (EXP) and nine untrained participants (UNT) completed three sets of eight repetitions at 60% of three repetition maximum in bench press. Muscle synergies were extracted from surface electromyography data of 21 bench press cycles using non-negative matrix factorization algorithm. The synergy activation coefficient represents the relative contribution of the muscle synergy to the overall muscle activity pattern, while the muscle synergy vector represents the relative weighting of each muscle within each synergy. Describing more than 90% of the variability, two muscle synergies reflected the eccentric and concentric phase. The cross-correlations (ρ(max)) for synergy activation coefficient 2 (concentric phase) were 0.83 [0.71;0.88] and 0.59 [0.49;0.77] [Median ρ(max) (25th;75th percentile)] (P = 0.001) in UNT and EXP, respectively. Median correlation coefficient (ρ) for muscle synergy vector 2 was 0.15 [-0.08;0.46] and 0.48 [0.02;0.70] (P = 0.03) in UNT and EXP, respectively. Thus, EXP showed larger inter-subject variability than UNT in the synergy activation coefficient during the concentric phase, while the muscle synergy vectors were less variable in EXP. This points at the importance of a specialized neural strategy in elite bench press performance.The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters (EXP) and nine untrained participants (UNT) completed three sets of eight repetitions at 60% of three repetition maximum in bench press. Muscle synergies were extracted from surface electromyography data of 21 bench press cycles using non-negative matrix factorization algorithm. The synergy activation coefficient represents the relative contribution of the muscle synergy to the overall muscle activity pattern, while the muscle synergy vector represents the relative weighting of each muscle within each synergy. Describing more than 90% of the variability, two muscle synergies reflected the eccentric and concentric phase. The cross-correlations (ρ(max)) for synergy activation coefficient 2 (concentric phase) were 0.83 [0.71;0.88] and 0.59 [0.49;0.77] [Median ρ(max) (25th;75th percentile)] (P = 0.001) in UNT and EXP, respectively. Median correlation coefficient (ρ) for muscle synergy vector 2 was 0.15 [-0.08;0.46] and 0.48 [0.02;0.70] (P = 0.03) in UNT and EXP, respectively. Thus, EXP showed larger inter-subject variability than UNT in the synergy activation coefficient during the concentric phase, while the muscle synergy vectors were less variable in EXP. This points at the importance of a specialized neural strategy in elite bench press performance.
The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters (EXP) and nine untrained participants (UNT) completed three sets of eight repetitions at 60% of three repetition maximum in bench press. Muscle synergies were extracted from surface electromyography data of 21 bench press cycles using non‐negative matrix factorization algorithm. The synergy activation coefficient represents the relative contribution of the muscle synergy to the overall muscle activity pattern, while the muscle synergy vector represents the relative weighting of each muscle within each synergy. Describing more than 90% of the variability, two muscle synergies reflected the eccentric and concentric phase. The cross‐correlations (ρmax) for synergy activation coefficient 2 (concentric phase) were 0.83 [0.71;0.88] and 0.59 [0.49;0.77] [Median ρmax (25th;75th percentile)] (P = 0.001) in UNT and EXP, respectively. Median correlation coefficient (ρ) for muscle synergy vector 2 was 0.15 [−0.08;0.46] and 0.48 [0.02;0.70] (P = 0.03) in UNT and EXP, respectively. Thus, EXP showed larger inter‐subject variability than UNT in the synergy activation coefficient during the concentric phase, while the muscle synergy vectors were less variable in EXP. This points at the importance of a specialized neural strategy in elite bench press performance.
Author Madeleine, P.
Kristiansen, M.
Hansen, E. A.
Samani, A.
Author_xml – sequence: 1
  givenname: M.
  surname: Kristiansen
  fullname: Kristiansen, M.
  organization: Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
– sequence: 2
  givenname: P.
  surname: Madeleine
  fullname: Madeleine, P.
  email: pm@hst.aau.dk
  organization: Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
– sequence: 3
  givenname: E. A.
  surname: Hansen
  fullname: Hansen, E. A.
  organization: Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
– sequence: 4
  givenname: A.
  surname: Samani
  fullname: Samani, A.
  organization: Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24372591$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLctB_4AssQFDmltx197RC0tlRYQ_QBulp2Mi7eJs9hJy_57TLftoRLMZQ7zvK9m5t1BW3GIgNArSvZpqYPc533KqFTP0IxKQiqia72FZmRORKWo1ttoJ-clIVTNuXiBthmvFRNzOkPXp3GEVOXJLaEZ8Y1NwbrQhXGNB4_7KTcd4LyOkK4CZNxOKcQr7CA2P_EqQc44RLwabiHhLvhilbGNLZ7imGyI0JZxG25CO9ku76HnvjR4ed930eXxh4vDj9Xiy8np4ftF1QimVOVYqzh1XHAJihNGW8cbp7wWDDRwXzuqLKt17WvvGqs1lSC8bBkXUper6l30duO7SsOvCfJo-pAb6DobYZiyoVIwzjnTuqBvnqDLYUqxbFcoLueCcyIL9fqemlwPrVml0Nu0Ng9vLMC7DdCkIecE_hGhxPyNyJSIzF1EhT14wjZhtGMY7l7W_U9xGzpY_9vanH86f1BUG0XII_x-VNh0bcpUCfP984n5cfzt6-Ko1uas_gPFUrG-
CitedBy_id crossref_primary_10_1177_19417381221084982
crossref_primary_10_1016_j_jevs_2017_02_005
crossref_primary_10_3390_s20030724
crossref_primary_10_3389_fnhum_2022_805452
crossref_primary_10_1007_s42978_021_00118_0
crossref_primary_10_1016_j_jelekin_2016_04_008
crossref_primary_10_1080_17461391_2019_1704068
crossref_primary_10_1186_s12984_023_01190_z
crossref_primary_10_1016_j_neuroscience_2019_04_016
crossref_primary_10_52082_jssm_2023_778
crossref_primary_10_1007_s40279_023_01943_9
crossref_primary_10_3389_fnbot_2019_00102
crossref_primary_10_1111_sms_14459
crossref_primary_10_3390_su14042017
crossref_primary_10_1016_j_jbiomech_2025_112637
crossref_primary_10_1155_2018_6067807
crossref_primary_10_1016_j_jelekin_2015_12_001
crossref_primary_10_1002_jor_23391
crossref_primary_10_1080_14763141_2020_1751872
crossref_primary_10_1016_j_jelekin_2016_06_004
crossref_primary_10_3390_s22041454
crossref_primary_10_1519_JSC_0000000000003097
crossref_primary_10_1134_S0362119722040089
crossref_primary_10_3390_jfmk5040075
crossref_primary_10_1080_02701367_2017_1401210
crossref_primary_10_1080_02640414_2016_1143109
crossref_primary_10_3390_s21051904
crossref_primary_10_1123_mc_2016_0026
crossref_primary_10_1016_j_humov_2025_103322
crossref_primary_10_1080_17461391_2021_2014573
crossref_primary_10_1519_JSC_0000000000004191
crossref_primary_10_3390_app142411783
crossref_primary_10_3390_sports7100224
crossref_primary_10_1519_JSC_0000000000001282
crossref_primary_10_1016_j_brainres_2022_148001
crossref_primary_10_7717_peerj_13155
crossref_primary_10_1155_2018_3934698
crossref_primary_10_1519_JSC_0000000000004543
crossref_primary_10_1007_s00221_024_06909_5
crossref_primary_10_1519_JSC_0000000000002448
crossref_primary_10_1371_journal_pone_0171632
crossref_primary_10_3389_fncom_2014_00100
crossref_primary_10_1111_sms_13027
crossref_primary_10_1519_JSC_0000000000003736
crossref_primary_10_1152_jn_00758_2015
crossref_primary_10_1038_s41598_023_28229_4
crossref_primary_10_1016_j_clinbiomech_2016_04_017
crossref_primary_10_1080_14763141_2018_1544662
crossref_primary_10_1590_1980_0037_2020v22e65225
crossref_primary_10_3389_fphys_2023_1282295
crossref_primary_10_3389_fncom_2020_588943
crossref_primary_10_1519_JSC_0000000000004561
crossref_primary_10_3389_fspor_2023_1290964
crossref_primary_10_1177_1747954119884441
crossref_primary_10_1111_sms_14706
crossref_primary_10_1016_j_jelekin_2020_102506
crossref_primary_10_1519_JSC_0000000000002613
crossref_primary_10_3390_ijerph18115907
crossref_primary_10_1038_s41598_023_28467_6
Cites_doi 10.1016/S1050-6411(00)00027-4
10.1152/jn.01096.2010
10.1038/44565
10.1007/s004210000248
10.1016/j.jelekin.2010.08.009
10.2165/00007256-200636020-00004
10.2307/2683975
10.1113/jphysiol.2003.057174
10.1111/j.1440-1681.1998.tb02179.x
10.1152/japplphysiol.01305.2009
10.1177/1073858406287987
10.1139/h00-014
10.1152/jn.00081.2006
10.1007/s002210050316
10.1152/jn.01360.2006
10.1152/jappl.1998.84.4.1341
10.2307/2530051
10.1002/mus.1038
10.1016/j.jelekin.2011.07.013
10.1186/1476-5918-5-7
10.1152/jn.00810.2005
10.1007/s00221-007-1199-2
10.3389/fncom.2012.00099
10.1080/14763140701322994
10.1034/j.1600-0838.2001.110606.x
10.1523/JNEUROSCI.23-35-11255.2003
10.2165/00007256-200737020-00004
10.1111/j.1600-0838.1995.tb00055.x
10.1007/s00221-003-1574-6
10.1080/00140130801958659
10.1152/jappl.1992.73.3.911
10.1111/j.1748-1716.2011.02271.x
10.1007/s00421-011-1928-x
10.1093/gerona/59.12.1334
10.1152/japplphysiol.00283.2002
10.1097/00003677-200210000-00007
ContentType Journal Article
Copyright 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
Copyright_xml – notice: 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TS
K9.
7X8
DOI 10.1111/sms.12167
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Physical Education Index
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Physical Education Index
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Recreation & Sports
EISSN 1600-0838
EndPage 97
ExternalDocumentID 3563333081
24372591
10_1111_sms_12167
SMS12167
ark_67375_WNG_XFVQLD38_R
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Culture Committee on Sports Research in Denmark
– fundername: Danish Council for Independent Research | Technology and Production Sciences
  funderid: 10092821
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
2QV
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZCM
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
DXH
EBC
EBD
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UAP
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YCJ
YFH
YNT
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TS
K9.
7X8
ID FETCH-LOGICAL-c5277-b2d741b4546e74021db4cb7f852e8e4f3b17a2383f3fbca8816e5f6d245682593
IEDL.DBID DR2
ISSN 0905-7188
1600-0838
IngestDate Fri Jul 11 05:19:12 EDT 2025
Fri Jul 04 22:41:10 EDT 2025
Thu Apr 03 07:08:42 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Tue Jul 29 01:59:16 EDT 2025
Wed Jan 22 16:33:32 EST 2025
Wed Oct 30 09:51:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords EMG normalization
muscle synergies
resistance training
Movement variability
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5277-b2d741b4546e74021db4cb7f852e8e4f3b17a2383f3fbca8816e5f6d245682593
Notes ArticleID:SMS12167
istex:585DF3CB9F90E379DA465258DE62BD67033E03F6
Ministry of Culture Committee on Sports Research in Denmark
Danish Council for Independent Research | Technology and Production Sciences - No. 10092821
Table S1. Cross-correlations of synergy activation coefficients (ρmax) and coefficients of correlation (ρ) of muscle synergy vectors for EXP and UNT. EXP, expert power lifters (n = 10); UNT, untrained subjects (n = 9).Table S2. Lag times (tmax) of synergy activation coefficients for EXP and UNT. EXP: expert power lifters (n = 10), UNT: untrained subjects (n = 9).
ark:/67375/WNG-XFVQLD38-R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24372591
PQID 1646954406
PQPubID 29404
PageCount 9
ParticipantIDs proquest_miscellaneous_1652444288
proquest_journals_1646954406
pubmed_primary_24372591
crossref_primary_10_1111_sms_12167
crossref_citationtrail_10_1111_sms_12167
wiley_primary_10_1111_sms_12167_SMS12167
istex_primary_ark_67375_WNG_XFVQLD38_R
PublicationCentury 2000
PublicationDate February 2015
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace Denmark
PublicationPlace_xml – name: Denmark
– name: Oxford
PublicationTitle Scandinavian journal of medicine & science in sports
PublicationTitleAlternate Scand J Med Sci Sports
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Ivanenko YP, Poppele RE, Lacquaniti F. Motor control programs and walking. Neuroscientist 2006: 12: 339-348.
Carolan B, Cafarelli E. Adaptations in coactivation after isometric resistance training. J Appl Physiol 1992: 73: 911-917.
Häkkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Mälkiä E, Kraemer WJ, Newton RU, Alen M. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol 1998: 84: 1341-1349.
Madeleine P, Voigt M, Mathiassen SE. The size of cycle-to-cycle variability in biomechanical exposure among butchers performing a standardised cutting task. Ergonomics 2008b: 51: 1078-1095.
Carroll TJ, Selvanayagam VS, Riek S, Semmler JG. Neural adaptations to strength training: moving beyond transcranial magnetic stimulation and reflex studies. Acta Physiol (Oxf) 2011: 202: 119-140.
Ludbrook J. Multiple comparison procedures updated. Clin Exp Pharmacol Physiol 1998: 25: 1032-1037.
Lexell J, Downham DY, Larsson Y, Bruhn E, Morsing B. Heavy-resistance training in older Scandinavian men and women: short- and long-term effects on arm and leg muscles. Scand J Med Sci Sports 1995: 5: 329-341.
Kamen G, Knight CA. Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci 2004: 59: 1334-1338.
Semmler JG, Nordstrom MA. Motor unit discharge and force tremor in skill- and strength-trained individuals. Exp Brain Res 1998: 119: 27-38.
Phillips SM. Short-term training: when do repeated bouts of resistance exercise become training? Can J Appl Physiol 2000: 25: 185-193.
Conover WJ, Iman RL. Analysis of covariance using the rank transformation. Biometrics 1982: 38: 715-724.
Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 2000: 10: 361-374.
Turpin NA, Guével A, Durand S, Hug F. No evidence of expertise-related changes in muscle synergies during rowing. J Electromyogr Kinesiol 2011a: 21: 1030-1040.
Bartlett R, Wheat J, Robins M. Is movement variability important for sports biomechanists? Sports Biomech 2007: 6: 224-243.
Lehman GJ, MacMillan B, MacIntyre I, Chivers M, Fluter M. Shoulder muscle EMG activity during push up variations on and off a Swiss ball. Dyn Med 2006: 5: 7.
Ivanenko YP, Poppele RE, Lacquaniti F. Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol (Lond) 2004: 556: 267-282.
Robins M, Wheat J, Irwin G, Bartlett R. The effect of shooting distance on movement variability in basketball. J Hum Mov Stud 2006: 50: 217-238.
Van Emmerik REA, Van Wegen EEH. On the functional aspects of variability in postural control. Exerc Sport Sci Rev 2002: 30: 177-183.
Turpin NA, Guével A, Durand S, Hug F. Effect of power output on muscle coordination during rowing. Eur J Appl Physiol 2011b: 111: 3017-3029.
Hug F, Turpin NA, Guével A, Dorel S. Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies? J Appl Physiol 2010: 108: 1727-1736.
Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 2002: 93: 1318-1326.
Kargo WJ, Nitz DA. Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. J Neurosci 2003: 23: 11255-11269.
Conover WJ, Iman RL. Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 1981: 35: 124-129.
Häkkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol 2000: 83: 51-62.
Madeleine P, Mathiassen SE, Arendt-Nielsen L. Changes in the degree of motor variability associated with experimental and chronic neck-shoulder pain during a standardised repetitive arm movement. Exp Brain Res 2008a: 185: 689-698.
Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med 2006: 36: 133-149.
Hansen S, Kvorning T, Kjær M, Sjøgaard G. The effect of short-term strength training on human skeletal muscle: the importance of physiologically elevated hormone levels. Scand J Med Sci Sports 2001: 11: 347-354.
Hug F. Can muscle coordination be precisely studied by surface electromyography? J Electromyogr Kinesiol 2011: 21: 1-12.
Patten C, Kamen G, Rowland DM. Adaptations in maximal motor unit discharge rate to strength training in young and older adults. Muscle Nerve 2001: 24: 542-550.
Frère J, Hug F. Between-subject variability of muscle synergies during a complex motor skill. Front Comput Neurosci 2012: 6: 99.
Hug F, Turpin NA, Couturier A, Dorel S. Consistency of muscle synergies during pedaling across different mechanical constraints. J Neurophysiol 2011: 106: 91-103.
Folland JP, Williams AG. The adaptations to strength training. Sports Med 2007: 37: 145-168.
Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM. Muscle synergies during shifts of the center of pressure by standing persons. Exp Brain Res 2003: 152: 281-292.
Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature 1999: 401: 788-791.
Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F. Motor patterns in human walking and running. J Neurophysiol 2006: 95: 3426-3437.
Torres-Oviedo G, Macpherson JM, Ting LH. Muscle synergy organization is robust across a variety of postural perturbations. J Neurophysiol 2006: 96: 1530-1546.
Torres-Oviedo G, Ting LH. Muscle synergies characterizing human postural responses. J Neurophysiol 2007: 98: 2144-2156.
1982; 38
2006; 96
2006; 50
2006; 95
2006; 12
2000; 25
2002; 30
2010; 108
2011b; 111
2006; 36
1998; 119
2006; 5
1998; 84
2008a; 185
2007; 98
1999; 401
2001; 24
1995; 5
1992; 73
2007; 37
1998; 25
2003; 152
2011; 202
2004; 556
2011; 106
2000; 10
2004; 59
2008b; 51
2000; 83
2011a; 21
1981; 35
2007; 6
2011; 21
2002; 93
2012; 6
2001; 11
2003; 23
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Robins M (e_1_2_7_32_1) 2006; 50
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – reference: Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 2000: 10: 361-374.
– reference: Hug F, Turpin NA, Couturier A, Dorel S. Consistency of muscle synergies during pedaling across different mechanical constraints. J Neurophysiol 2011: 106: 91-103.
– reference: Kargo WJ, Nitz DA. Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. J Neurosci 2003: 23: 11255-11269.
– reference: Carolan B, Cafarelli E. Adaptations in coactivation after isometric resistance training. J Appl Physiol 1992: 73: 911-917.
– reference: Torres-Oviedo G, Macpherson JM, Ting LH. Muscle synergy organization is robust across a variety of postural perturbations. J Neurophysiol 2006: 96: 1530-1546.
– reference: Hansen S, Kvorning T, Kjær M, Sjøgaard G. The effect of short-term strength training on human skeletal muscle: the importance of physiologically elevated hormone levels. Scand J Med Sci Sports 2001: 11: 347-354.
– reference: Conover WJ, Iman RL. Analysis of covariance using the rank transformation. Biometrics 1982: 38: 715-724.
– reference: Semmler JG, Nordstrom MA. Motor unit discharge and force tremor in skill- and strength-trained individuals. Exp Brain Res 1998: 119: 27-38.
– reference: Häkkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol 2000: 83: 51-62.
– reference: Hug F, Turpin NA, Guével A, Dorel S. Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies? J Appl Physiol 2010: 108: 1727-1736.
– reference: Phillips SM. Short-term training: when do repeated bouts of resistance exercise become training? Can J Appl Physiol 2000: 25: 185-193.
– reference: Frère J, Hug F. Between-subject variability of muscle synergies during a complex motor skill. Front Comput Neurosci 2012: 6: 99.
– reference: Lehman GJ, MacMillan B, MacIntyre I, Chivers M, Fluter M. Shoulder muscle EMG activity during push up variations on and off a Swiss ball. Dyn Med 2006: 5: 7.
– reference: Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med 2006: 36: 133-149.
– reference: Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 2002: 93: 1318-1326.
– reference: Torres-Oviedo G, Ting LH. Muscle synergies characterizing human postural responses. J Neurophysiol 2007: 98: 2144-2156.
– reference: Kamen G, Knight CA. Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci 2004: 59: 1334-1338.
– reference: Patten C, Kamen G, Rowland DM. Adaptations in maximal motor unit discharge rate to strength training in young and older adults. Muscle Nerve 2001: 24: 542-550.
– reference: Lexell J, Downham DY, Larsson Y, Bruhn E, Morsing B. Heavy-resistance training in older Scandinavian men and women: short- and long-term effects on arm and leg muscles. Scand J Med Sci Sports 1995: 5: 329-341.
– reference: Madeleine P, Mathiassen SE, Arendt-Nielsen L. Changes in the degree of motor variability associated with experimental and chronic neck-shoulder pain during a standardised repetitive arm movement. Exp Brain Res 2008a: 185: 689-698.
– reference: Häkkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Mälkiä E, Kraemer WJ, Newton RU, Alen M. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol 1998: 84: 1341-1349.
– reference: Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature 1999: 401: 788-791.
– reference: Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM. Muscle synergies during shifts of the center of pressure by standing persons. Exp Brain Res 2003: 152: 281-292.
– reference: Hug F. Can muscle coordination be precisely studied by surface electromyography? J Electromyogr Kinesiol 2011: 21: 1-12.
– reference: Turpin NA, Guével A, Durand S, Hug F. No evidence of expertise-related changes in muscle synergies during rowing. J Electromyogr Kinesiol 2011a: 21: 1030-1040.
– reference: Carroll TJ, Selvanayagam VS, Riek S, Semmler JG. Neural adaptations to strength training: moving beyond transcranial magnetic stimulation and reflex studies. Acta Physiol (Oxf) 2011: 202: 119-140.
– reference: Ivanenko YP, Poppele RE, Lacquaniti F. Motor control programs and walking. Neuroscientist 2006: 12: 339-348.
– reference: Madeleine P, Voigt M, Mathiassen SE. The size of cycle-to-cycle variability in biomechanical exposure among butchers performing a standardised cutting task. Ergonomics 2008b: 51: 1078-1095.
– reference: Robins M, Wheat J, Irwin G, Bartlett R. The effect of shooting distance on movement variability in basketball. J Hum Mov Stud 2006: 50: 217-238.
– reference: Van Emmerik REA, Van Wegen EEH. On the functional aspects of variability in postural control. Exerc Sport Sci Rev 2002: 30: 177-183.
– reference: Turpin NA, Guével A, Durand S, Hug F. Effect of power output on muscle coordination during rowing. Eur J Appl Physiol 2011b: 111: 3017-3029.
– reference: Conover WJ, Iman RL. Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 1981: 35: 124-129.
– reference: Bartlett R, Wheat J, Robins M. Is movement variability important for sports biomechanists? Sports Biomech 2007: 6: 224-243.
– reference: Ludbrook J. Multiple comparison procedures updated. Clin Exp Pharmacol Physiol 1998: 25: 1032-1037.
– reference: Ivanenko YP, Poppele RE, Lacquaniti F. Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol (Lond) 2004: 556: 267-282.
– reference: Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F. Motor patterns in human walking and running. J Neurophysiol 2006: 95: 3426-3437.
– reference: Folland JP, Williams AG. The adaptations to strength training. Sports Med 2007: 37: 145-168.
– volume: 23
  start-page: 11255
  year: 2003
  end-page: 11269
  article-title: Early skill learning is expressed through selection and tuning of cortically represented muscle synergies
  publication-title: J Neurosci
– volume: 5
  start-page: 7
  year: 2006
  article-title: Shoulder muscle EMG activity during push up variations on and off a Swiss ball
  publication-title: Dyn Med
– volume: 96
  start-page: 1530
  year: 2006
  end-page: 1546
  article-title: Muscle synergy organization is robust across a variety of postural perturbations
  publication-title: J Neurophysiol
– volume: 37
  start-page: 145
  year: 2007
  end-page: 168
  article-title: The adaptations to strength training
  publication-title: Sports Med
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  article-title: Learning the parts of objects by non‐negative matrix factorization
  publication-title: Nature
– volume: 21
  start-page: 1
  year: 2011
  end-page: 12
  article-title: Can muscle coordination be precisely studied by surface electromyography?
  publication-title: J Electromyogr Kinesiol
– volume: 108
  start-page: 1727
  year: 2010
  end-page: 1736
  article-title: Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies?
  publication-title: J Appl Physiol
– volume: 5
  start-page: 329
  year: 1995
  end-page: 341
  article-title: Heavy‐resistance training in older Scandinavian men and women: short‐ and long‐term effects on arm and leg muscles
  publication-title: Scand J Med Sci Sports
– volume: 25
  start-page: 185
  year: 2000
  end-page: 193
  article-title: Short‐term training: when do repeated bouts of resistance exercise become training?
  publication-title: Can J Appl Physiol
– volume: 50
  start-page: 217
  year: 2006
  end-page: 238
  article-title: The effect of shooting distance on movement variability in basketball
  publication-title: J Hum Mov Stud
– volume: 111
  start-page: 3017
  year: 2011b
  end-page: 3029
  article-title: Effect of power output on muscle coordination during rowing
  publication-title: Eur J Appl Physiol
– volume: 185
  start-page: 689
  year: 2008a
  end-page: 698
  article-title: Changes in the degree of motor variability associated with experimental and chronic neck‐shoulder pain during a standardised repetitive arm movement
  publication-title: Exp Brain Res
– volume: 11
  start-page: 347
  year: 2001
  end-page: 354
  article-title: The effect of short‐term strength training on human skeletal muscle: the importance of physiologically elevated hormone levels
  publication-title: Scand J Med Sci Sports
– volume: 202
  start-page: 119
  year: 2011
  end-page: 140
  article-title: Neural adaptations to strength training: moving beyond transcranial magnetic stimulation and reflex studies
  publication-title: Acta Physiol (Oxf)
– volume: 83
  start-page: 51
  year: 2000
  end-page: 62
  article-title: Neuromuscular adaptation during prolonged strength training, detraining and re‐strength‐training in middle‐aged and elderly people
  publication-title: Eur J Appl Physiol
– volume: 30
  start-page: 177
  year: 2002
  end-page: 183
  article-title: On the functional aspects of variability in postural control
  publication-title: Exerc Sport Sci Rev
– volume: 36
  start-page: 133
  year: 2006
  end-page: 149
  article-title: Neural adaptations to resistive exercise: mechanisms and recommendations for training practices
  publication-title: Sports Med
– volume: 51
  start-page: 1078
  year: 2008b
  end-page: 1095
  article-title: The size of cycle‐to‐cycle variability in biomechanical exposure among butchers performing a standardised cutting task
  publication-title: Ergonomics
– volume: 24
  start-page: 542
  year: 2001
  end-page: 550
  article-title: Adaptations in maximal motor unit discharge rate to strength training in young and older adults
  publication-title: Muscle Nerve
– volume: 95
  start-page: 3426
  year: 2006
  end-page: 3437
  article-title: Motor patterns in human walking and running
  publication-title: J Neurophysiol
– volume: 98
  start-page: 2144
  year: 2007
  end-page: 2156
  article-title: Muscle synergies characterizing human postural responses
  publication-title: J Neurophysiol
– volume: 21
  start-page: 1030
  year: 2011a
  end-page: 1040
  article-title: No evidence of expertise‐related changes in muscle synergies during rowing
  publication-title: J Electromyogr Kinesiol
– volume: 59
  start-page: 1334
  year: 2004
  end-page: 1338
  article-title: Training‐related adaptations in motor unit discharge rate in young and older adults
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 73
  start-page: 911
  year: 1992
  end-page: 917
  article-title: Adaptations in coactivation after isometric resistance training
  publication-title: J Appl Physiol
– volume: 152
  start-page: 281
  year: 2003
  end-page: 292
  article-title: Muscle synergies during shifts of the center of pressure by standing persons
  publication-title: Exp Brain Res
– volume: 84
  start-page: 1341
  year: 1998
  end-page: 1349
  article-title: Changes in agonist‐antagonist EMG, muscle CSA, and force during strength training in middle‐aged and older people
  publication-title: J Appl Physiol
– volume: 6
  start-page: 99
  year: 2012
  article-title: Between‐subject variability of muscle synergies during a complex motor skill
  publication-title: Front Comput Neurosci
– volume: 12
  start-page: 339
  year: 2006
  end-page: 348
  article-title: Motor control programs and walking
  publication-title: Neuroscientist
– volume: 35
  start-page: 124
  year: 1981
  end-page: 129
  article-title: Rank transformations as a bridge between parametric and nonparametric statistics
  publication-title: Am Stat
– volume: 93
  start-page: 1318
  year: 2002
  end-page: 1326
  article-title: Increased rate of force development and neural drive of human skeletal muscle following resistance training
  publication-title: J Appl Physiol
– volume: 6
  start-page: 224
  year: 2007
  end-page: 243
  article-title: Is movement variability important for sports biomechanists?
  publication-title: Sports Biomech
– volume: 119
  start-page: 27
  year: 1998
  end-page: 38
  article-title: Motor unit discharge and force tremor in skill‐ and strength‐trained individuals
  publication-title: Exp Brain Res
– volume: 10
  start-page: 361
  year: 2000
  end-page: 374
  article-title: Development of recommendations for SEMG sensors and sensor placement procedures
  publication-title: J Electromyogr Kinesiol
– volume: 38
  start-page: 715
  year: 1982
  end-page: 724
  article-title: Analysis of covariance using the rank transformation
  publication-title: Biometrics
– volume: 556
  start-page: 267
  year: 2004
  end-page: 282
  article-title: Five basic muscle activation patterns account for muscle activity during human locomotion
  publication-title: J Physiol (Lond)
– volume: 25
  start-page: 1032
  year: 1998
  end-page: 1037
  article-title: Multiple comparison procedures updated
  publication-title: Clin Exp Pharmacol Physiol
– volume: 106
  start-page: 91
  year: 2011
  end-page: 103
  article-title: Consistency of muscle synergies during pedaling across different mechanical constraints
  publication-title: J Neurophysiol
– ident: e_1_2_7_15_1
  doi: 10.1016/S1050-6411(00)00027-4
– ident: e_1_2_7_17_1
  doi: 10.1152/jn.01096.2010
– ident: e_1_2_7_24_1
  doi: 10.1038/44565
– ident: e_1_2_7_12_1
  doi: 10.1007/s004210000248
– volume: 50
  start-page: 217
  year: 2006
  ident: e_1_2_7_32_1
  article-title: The effect of shooting distance on movement variability in basketball
  publication-title: J Hum Mov Stud
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jelekin.2010.08.009
– ident: e_1_2_7_11_1
  doi: 10.2165/00007256-200636020-00004
– ident: e_1_2_7_7_1
  doi: 10.2307/2683975
– ident: e_1_2_7_19_1
  doi: 10.1113/jphysiol.2003.057174
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1440-1681.1998.tb02179.x
– ident: e_1_2_7_18_1
  doi: 10.1152/japplphysiol.01305.2009
– ident: e_1_2_7_20_1
  doi: 10.1177/1073858406287987
– ident: e_1_2_7_31_1
  doi: 10.1139/h00-014
– ident: e_1_2_7_4_1
  doi: 10.1152/jn.00081.2006
– ident: e_1_2_7_33_1
  doi: 10.1007/s002210050316
– ident: e_1_2_7_35_1
  doi: 10.1152/jn.01360.2006
– ident: e_1_2_7_13_1
  doi: 10.1152/jappl.1998.84.4.1341
– ident: e_1_2_7_8_1
  doi: 10.2307/2530051
– ident: e_1_2_7_30_1
  doi: 10.1002/mus.1038
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jelekin.2011.07.013
– ident: e_1_2_7_25_1
  doi: 10.1186/1476-5918-5-7
– ident: e_1_2_7_34_1
  doi: 10.1152/jn.00810.2005
– ident: e_1_2_7_28_1
  doi: 10.1007/s00221-007-1199-2
– ident: e_1_2_7_10_1
  doi: 10.3389/fncom.2012.00099
– ident: e_1_2_7_3_1
  doi: 10.1080/14763140701322994
– ident: e_1_2_7_14_1
  doi: 10.1034/j.1600-0838.2001.110606.x
– ident: e_1_2_7_22_1
  doi: 10.1523/JNEUROSCI.23-35-11255.2003
– ident: e_1_2_7_9_1
  doi: 10.2165/00007256-200737020-00004
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1600-0838.1995.tb00055.x
– ident: e_1_2_7_23_1
  doi: 10.1007/s00221-003-1574-6
– ident: e_1_2_7_29_1
  doi: 10.1080/00140130801958659
– ident: e_1_2_7_5_1
  doi: 10.1152/jappl.1992.73.3.911
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1748-1716.2011.02271.x
– ident: e_1_2_7_37_1
  doi: 10.1007/s00421-011-1928-x
– ident: e_1_2_7_21_1
  doi: 10.1093/gerona/59.12.1334
– ident: e_1_2_7_2_1
  doi: 10.1152/japplphysiol.00283.2002
– ident: e_1_2_7_38_1
  doi: 10.1097/00003677-200210000-00007
SSID ssj0017945
Score 2.3627453
Snippet The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters (EXP) and nine untrained...
The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters ( EXP ) and nine...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 89
SubjectTerms Adult
Bodybuilding
Case-Control Studies
Electromyography
EMG normalization
Humans
Male
Movement variability
muscle synergies
Muscle, Skeletal - physiology
Resistance Training
Sports training
Weight-Bearing - physiology
Weightlifting
Young Adult
Title Inter-subject variability of muscle synergies during bench press in power lifters and untrained individuals
URI https://api.istex.fr/ark:/67375/WNG-XFVQLD38-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsms.12167
https://www.ncbi.nlm.nih.gov/pubmed/24372591
https://www.proquest.com/docview/1646954406
https://www.proquest.com/docview/1652444288
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRUJcKF1-GijIIFRxSZVsbMcrThWwVIitREthD0iRndjqqt1s1WwQ5dRH4Bl5ks44P1BUJMQtUiaO7cw439gz3wA8H8k80ghDQ3QuhiHXKsd1MBKhtU7naRwb68u3Tfbk7iF_NxXTFXjZ5cI0_BD9hhtZhl-vycC1qX4z8mpeETWCpExyitUiQLTfU0eRnvnwxRG-GNdf1bIKURRP_-SVf9ENmtZv1wHNq7jV_3jGa_Cl63ITb3K8XS_Ndv79DzbH_xzTHbjdAlK202jQOqzYcgA3J-2R-wAGv4Al22K-KHp1F-Z-J_HnxY-qNrSTw76iz91Qfp-zhWPzusLWWHVOqYXojLMmHZIZNIoj5oNv2axkp1SjjZ3MqFB5xXRZsLr0RStswWZ9qlh1Dw7Hbz6-2g3byg1hLuhM2AwLRCqGCy5tih5qXBiem9QpMbTKcpeYONUIFhKXOJNrpWJphZMFncKiyzpK7sNquSjtBrDIiaiwphhqFfFcWcRLhXHSIZARhVVRAC-6b5jlLa05dfQk69wbnNTMT2oAz3rR04bL4zqhLa8IvYQ-O6bgt1Rkn_feZtPxpw_vXycq2w9gs9OUrLV7bEJyORIcUVIAT_vbaLF0DKNLu6hJRiCmQrdPBfCg0bD-ZUQPieOPcVReT_7ez-xgcuAvHv676CO4hXhPNEHnm7C6PKvtY8RUS_PEG88lMkAeJw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuPJZXoIBBqOKSKtnEiVfigoBlgd2V6IPuBUV2bItVu9mq2SDKiZ_Ab-SXMOM8oKhIiFukTPzKjP2NPf4G4MkgyQOJMNRH56Lvx1LkOA8G3DfGyjwNQ2Vc-rbJNBntx29nfLYGz9q7MDU_RLfhRpbh5msycNqQ_s3Ky0VJ3AhJegE2KKO3c6h2OvIo0jQXwDjAqnEGFg2vEMXxdJ-eWY02aGC_nAc1zyJXt_QMr8LHttF1xMnhdrVS2_nXP_gc_7dX1-BKg0nZ81qJrsOaKXpwcdKcuveg9wtbsi3m8qKXN2DhNhN_fPteVoo2c9hndLtr1u9TtrRsUZVYGitP6XYh-uOsvhHJFNrFJ-bib9m8YMeUpo0dzSlXeclkoVlVuLwVRrN5d1usvAn7w1d7L0Z-k7zBzzkdC6u-RrCiYh4nJkUnNdQqzlVqBe8bYWIbqTCViBciG1mVSyHCxHCbaDqIRa91EN2C9WJZmDvAAssDbZTuSxHEuTAImbSyiUUsw7URgQdP25-Y5Q2zOTX0KGs9HBzUzA2qB4870eOazuM8oS2nCZ2EPDmk-LeUZwfT19ls-OH9-GUksh0PNltVyRrTxyKSOBnwGIGSB4-612i0dBIjC7OsSIYjrELPT3hwu1axrjJiiMT-h9grpyh_b2e2O9l1D3f_XfQhXBrtTcbZ-M303T24jPCP1zHom7C-OqnMfYRYK_XAWdJP9esiQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqq48FhegQIGoYpLqmRjO15xQixLge4KWgp7QIrs2BardrOrZoMoJ34Cv5Ffwth5QFGRELdImfiVGfsbe_wNwKMBzyOJMDRE56IfUilynAcjFhpjZZ7GsTI-fdt4wncP6aspm67Bk_YuTM0P0W24Ocvw87Uz8KW2vxl5OS8dNQJPL8AG5ZFwKj3c77ijnKL5-MUB1owTsGhohVwYT_fpmcVow43rl_OQ5lng6lee0WX42La5Djg52qlWaif_-ged43926gpcahApeVqr0FVYM0UPNsfNmXsPer-QJdkmPit6eQ3mfivxx7fvZaXcVg75jE53zfl9ShaWzKsSSyPlqbtbiN44qe9DEoVW8Yn46FsyK8jSJWkjxzOXqbwkstCkKnzWCqPJrLsrVl6Hw9Hzd892wyZ1Q5gzdyis-hqhiqKMcpOiixprRXOVWsH6RhhqExWnEtFCYhOrcilEzA2zXLtjWPRZB8kNWC8WhbkFJLIs0kbpvhQRzYVBwKSV5RaRDNNGRAE8bv9hlje85q6hx1nr3-CgZn5QA3jYiS5rMo_zhLa9InQS8uTIRb-lLPsweZFNR-_f7g0Tke0HsNVqStYYPhbBKR8wijApgAfdazRZdw4jC7OonAxDUIV-nwjgZq1hXWWOHxL7H2OvvJ78vZ3ZwfjAP9z-d9H7sPlmOMr2Xk5e34GLiP1YHYC-Beurk8rcRXy1Uve8Hf0Emn4g-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-subject+variability+of+muscle+synergies+during+bench+press+in+power+lifters+and+untrained+individuals&rft.jtitle=Scandinavian+journal+of+medicine+%26+science+in+sports&rft.au=Kristiansen%2C+M&rft.au=Madeleine%2C+P&rft.au=Hansen%2C+E+A&rft.au=Samani%2C+A&rft.date=2015-02-01&rft.eissn=1600-0838&rft.volume=25&rft.issue=1&rft.spage=89&rft_id=info:doi/10.1111%2Fsms.12167&rft_id=info%3Apmid%2F24372591&rft.externalDocID=24372591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0905-7188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0905-7188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0905-7188&client=summon