Regulator of G-protein signaling 19 (RGS19) and its partner Gα-inhibiting activity polypeptide 3 (GNAI3) are required for zVAD-induced autophagy and cell death in L929 cells

Autophagy has diverse biological functions and is involved in many biological processes. The L929 cell death induced by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(OMe)-fluoromethyl ketone (zVAD) was shown to be an autophagy-mediated death for which RIP1 and RIP3 were both required. It...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 4; p. e94634
Main Authors Wu, Ting, Li, Yuanyue, Huang, Deli, Han, Felicia, Zhang, Ying-Ying, Zhang, Duan-Wu, Han, Jiahuai
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 21.04.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Autophagy has diverse biological functions and is involved in many biological processes. The L929 cell death induced by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(OMe)-fluoromethyl ketone (zVAD) was shown to be an autophagy-mediated death for which RIP1 and RIP3 were both required. It was also reported that zVAD can induce a small amount of TNF production, which was shown to be required for zVAD-induced L929 cell death, arguing for the contribution of autophagy in the zVAD-induced L929 cell death. In an effort to study RIP3 mediated cell death, we identified regulator of G-protein signaling 19 (RGS19) as a RIP3 interacting protein. We showed that RGS19 and its partner Gα-inhibiting activity polypeptide 3 (GNAI3) are involved in zVAD-, but not TNF-, induced cell death. The role of RGS19 and GNAI3 in zVAD-induced cell death is that they are involved in zVAD-induced autophagy. By the use of small hairpin RNAs and chemical inhibitors, we further demonstrated that zVAD-induced autophagy requires not only RIP1, RIP3, PI3KC3 and Beclin-1, but also RGS19 and GNAI3, and this autophagy is required for zVAD-induced TNF production. Collectively, our data suggest that zVAD-induced L929 cell death is a synergistic result of autophagy, caspase inhibition and autocrine effect of TNF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: TW DWZ JH. Performed the experiments: TW YL FH YYZ DWZ DH. Analyzed the data: YL FH JH. Contributed reagents/materials/analysis tools: YL FH YYZ. Wrote the paper: TW DWZ JH.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0094634