Verifying three-dimensional skull model reconstruction using cranial index of symmetry

Difficulty exists in scalp adaptation for cranioplasty with customized computer-assisted design/manufacturing (CAD/CAM) implant in situations of excessive wound tension and sub-cranioplasty dead space. To solve this clinical problem, the CAD/CAM technique should include algorithms to reconstruct a d...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 8; no. 10; p. e74267
Main Authors Kung, Woon-Man, Chen, Shuo-Tsung, Lin, Chung-Hsiang, Lu, Yu-Mei, Chen, Tzu-Hsuan, Lin, Muh-Shi
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.10.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Difficulty exists in scalp adaptation for cranioplasty with customized computer-assisted design/manufacturing (CAD/CAM) implant in situations of excessive wound tension and sub-cranioplasty dead space. To solve this clinical problem, the CAD/CAM technique should include algorithms to reconstruct a depressed contour to cover the skull defect. Satisfactory CAM-derived alloplastic implants are based on highly accurate three-dimensional (3-D) CAD modeling. Thus, it is quite important to establish a symmetrically regular CAD/CAM reconstruction prior to depressing the contour. The purpose of this study is to verify the aesthetic outcomes of CAD models with regular contours using cranial index of symmetry (CIS). From January 2011 to June 2012, decompressive craniectomy (DC) was performed for 15 consecutive patients in our institute. 3-D CAD models of skull defects were reconstructed using commercial software. These models were checked in terms of symmetry by CIS scores. CIS scores of CAD reconstructions were 99.24±0.004% (range 98.47-99.84). CIS scores of these CAD models were statistically significantly greater than 95%, identical to 99.5%, but lower than 99.6% (p<0.001, p = 0.064, p = 0.021 respectively, Wilcoxon matched pairs signed rank test). These data evidenced the highly accurate symmetry of these CAD models with regular contours. CIS calculation is beneficial to assess aesthetic outcomes of CAD-reconstructed skulls in terms of cranial symmetry. This enables further accurate CAD models and CAM cranial implants with depressed contours, which are essential in patients with difficult scalp adaptation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: WMK MSL. Performed the experiments: WMK STC CHL THC MSL. Analyzed the data: STC CHL YML. Contributed reagents/materials/analysis tools: STC CHL YML THC. Wrote the paper: WMK MSL.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0074267