Gene flow in commercial alfalfa (Medicago sativa subsp. sativa L.) seed production fields: Distance is the primary but not the sole influence on adventitious presence
In insect-pollinated crops, gene flow is affected by numerous factors including crop characteristics, mating system, life history, pollinators, and planting management practices. Previous studies have concentrated on the impact of distance between genetically engineered (GE) and conventional fields...
Saved in:
Published in | PloS one Vol. 16; no. 3; p. e0248746 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
25.03.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In insect-pollinated crops, gene flow is affected by numerous factors including crop characteristics, mating system, life history, pollinators, and planting management practices. Previous studies have concentrated on the impact of distance between genetically engineered (GE) and conventional fields on adventitious presence (AP) which represents the unwanted presence of a GE gene. Variables other than distance, however, may affect AP. In addition, some AP is often present in the parent seed lots used to establish conventional fields. To identify variables that influence the proportion of AP in conventional alfalfa fields, we performed variable selection regression analyses. Analyses based on a sample-level and a field-level analysis gave similar, though not identical results. For the sample-level model, distance from the GE field explained 66% of the variance in AP, confirming its importance in affecting AP. The area of GE fields within the pollinator foraging range explained an additional 30% of the variation in AP in the model. The density of alfalfa leafcutting bee domiciles influenced AP in both models. To minimize AP in conventional alfalfa seed fields, management practices should focus on optimizing isolation distances while also considering the size of the GE pollen pool within the pollinator foraging range, and the foraging behavior of pollinators. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0248746 |