Trehalose improves human fibroblast deficits in a new CHIP-mutation related ataxia
In this work we investigate the role of CHIP in a new CHIP-mutation related ataxia and the therapeutic potential of trehalose. The patient's fibroblasts with a new form of hereditary ataxia, related to STUB1 gene (CHIP) mutations, and three age and sex-matched controls were treated with epoxomi...
Saved in:
Published in | PloS one Vol. 9; no. 9; p. e106931 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
26.09.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work we investigate the role of CHIP in a new CHIP-mutation related ataxia and the therapeutic potential of trehalose. The patient's fibroblasts with a new form of hereditary ataxia, related to STUB1 gene (CHIP) mutations, and three age and sex-matched controls were treated with epoxomicin and trehalose. The effects on cell death, protein misfolding and proteostasis were evaluated. Recent studies have revealed that mutations in STUB-1 gene lead to a growing list of molecular defects as deregulation of protein quality, inhibition of proteasome, cell death, decreased autophagy and alteration in CHIP and HSP70 levels. In this CHIP-mutant patient fibroblasts the inhibition of proteasome with epoxomicin induced severe pathophysiological age-associated changes, cell death and protein ubiquitination. Additionally, treatment with epoxomicin produced a dose-dependent increase in the number of cleaved caspase-3 positive cells. However, co-treatment with trehalose, a disaccharide of glucose present in a wide variety of organisms and known as a autophagy enhancer, reduced these pathological events. Trehalose application also increased CHIP and HSP70 expression and GSH free radical levels. Furthermore, trehalose augmented macro and chaperone mediated autophagy (CMA), rising the levels of LC3, LAMP2, CD63 and increasing the expression of Beclin-1 and Atg5-Atg12. Trehalose treatment in addition increased the percentage of immunoreactive cells to HSC70 and LAMP2 and reduced the autophagic substrate, p62. Although this is an individual case based on only one patient and the statistical comparisons are not valid between controls and patient, the low variability among controls and the obvious differences with this patient allow us to conclude that trehalose, through its autophagy activation capacity, anti-aggregation properties, anti-oxidative effects and lack of toxicity, could be very promising for the treatment of CHIP-mutation related ataxia, and possibly a wide spectrum of neurodegenerative disorders related to protein disconformation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: JGY MJC MAM. Performed the experiments: MJC AG JP. Analyzed the data: MJC JP MAM. Contributed reagents/materials/analysis tools: JLS CR. Wrote the paper: MJC JP MAM JGY. Critical revision of the manuscript: CB. Important intellectual content: CB PH PR. Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0106931 |