Metal-rich Ambient Particles (Particulate Matter2.5) Cause Airway Inflammation in Healthy Subjects

Epidemiologic studies have shown an increased prevalence of allergic asthma in children living in a German smelter area (Hettstedt) compared with a cohort who live in a nonindustrialized area (Zerbst). However, it is not known whether ambient particles (particulate matter(2.5) [PM(2.5)]) from these...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of respiratory and critical care medicine Vol. 170; no. 8; pp. 898 - 903
Main Authors Schaumann, Frank, Borm, Paul J. A, Herbrich, Andreas, Knoch, Johannes, Pitz, Mike, Schins, Roel P. F, Luettig, Birgit, Hohlfeld, Jens M, Heinrich, Joachim, Krug, Norbert
Format Journal Article
LanguageEnglish
Published New York, NY Am Thoracic Soc 15.10.2004
American Lung Association
American Thoracic Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Epidemiologic studies have shown an increased prevalence of allergic asthma in children living in a German smelter area (Hettstedt) compared with a cohort who live in a nonindustrialized area (Zerbst). However, it is not known whether ambient particles (particulate matter(2.5) [PM(2.5)]) from these areas induce distinct lung inflammation, which might be an explanation for this difference. Therefore, 100 microg of PM(2.5) suspensions, collected simultaneously in the two areas, were instilled through a bronchoscope into contralateral lung segments of 12 healthy volunteers. PM(2.5) from both Hettstedt and Zerbst increased the number of leukocytes in the bronchoalveolar lavage performed 24 hours later. PM(2.5) from Hettstedt, but not Zerbst, induced a significant influx of monocytes (Hettstedt: 7.0% vs. Zerbst: 4.3%) without influencing the expression of surface activation markers on monocytes and alveolar macrophages. Oxidant radical generation of bronchoalveolar lavage cells and cytokine concentration (interleukin-6 and tumor necrosis factor-alpha) in bronchoalveolar lavage fluid was significantly increased after instillation of Hettstedt PM(2.5). We conclude that environmentally relevant concentrations of PM(2.5) from the smelter area induced distinct airway inflammation in healthy subjects with a selective influx of monocytes and increased generation of oxidant radicals. The higher concentration of transition metals in PM(2.5) from Hettstedt might be responsible for this increased inflammation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1073-449X
1535-4970
DOI:10.1164/rccm.200403-423OC