IL-21R signaling suppresses IL-17+ gamma delta T cell responses and production of IL-17 related cytokines in the lung at steady state and after Influenza A virus infection

Influenza A virus (IAV) infection of the respiratory tract elicits a robust immune response, which is required for efficient virus clearance but at the same time can contribute to lung damage and enhanced morbidity. IL-21 is a member of the type I cytokine family and has many different immune-modula...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 10; no. 4; p. e0120169
Main Authors Moser, Emily K, Sun, Jie, Kim, Taeg S, Braciale, Thomas J
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.04.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Influenza A virus (IAV) infection of the respiratory tract elicits a robust immune response, which is required for efficient virus clearance but at the same time can contribute to lung damage and enhanced morbidity. IL-21 is a member of the type I cytokine family and has many different immune-modulatory functions during acute and chronic virus infections, although its role in IAV infection has not been fully evaluated. In this report we evaluated the contributions of IL-21/IL-21 receptor (IL-21R) signaling to host defense in a mouse model of primary IAV infection using IL-21R knock out (KO) mice. We found that lack of IL-21R signaling had no significant impact on virus clearance, adaptive T cell responses, or myeloid cell accumulations in the respiratory tract. However, a subset of inflammatory cytokines were elevated in the bronchoalveolar lavage fluid of IL-21R KO mice, including IL-17. Although there was only a small increase in Th17 cells in the lungs of IL-21R KO mice, we observed a dramatic increase in gamma delta (γδ) T cells capable of producing IL-17 both after IAV infection and at steady state in the respiratory tract. Finally, we found that IL-21R signaling suppressed the accumulation of IL-17+ γδ T cells in the respiratory tract intrinsically. Thus, our study reveals a previously unrecognized role of IL-21R signaling in regulating IL-17 production by γδ T cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: EKM JS TSK TJB. Performed the experiments: EKM JS. Analyzed the data: EKM JS TSK. Contributed reagents/materials/analysis tools: TJB. Wrote the paper: EKM TSK.
Competing Interests: The authors have confirmed that Jie Sun is an editor for PLOS ONE, and this does not alter the authors' adherence to PLOS ONE Editorial policies and criteria.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0120169