Mapping the race between crop phenology and climate risks for wheat in France under climate change

Climate change threatens food security by affecting the productivity of major cereal crops. To date, agroclimatic risk projections through indicators have focused on expected hazards exposure during the crop’s current vulnerable seasons, without considering the non-stationarity of their phenology un...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; p. 8184
Main Authors Le Roux, Renan, Furusho-Percot, Carina, Deswarte, Jean-Charles, Bancal, Marie-Odile, Chenu, Karine, de Noblet-Ducoudré, Nathalie, de Cortázar-Atauri, Iñaki García, Durand, Alexis, Bulut, Burak, Maury, Olivier, Décome, Jérémie, Launay, Marie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.04.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Climate change threatens food security by affecting the productivity of major cereal crops. To date, agroclimatic risk projections through indicators have focused on expected hazards exposure during the crop’s current vulnerable seasons, without considering the non-stationarity of their phenology under evolving climatic conditions. We propose a new method for spatially classifying agroclimatic risks for wheat, combining high-resolution climatic data with a wheat’s phenological model. The method is implemented for French wheat involving three GCM-RCM model pairs and two emission scenarios. We found that the precocity of phenological stages allows wheat to avoid periods of water deficit in the near future. Nevertheless, in the coming decades the emergence of heat stress and increasing water deficit will deteriorate wheat cultivation over the French territory. Projections show the appearance of combined risks of heat and water deficit up to 4 years per decade under the RCP 8.5 scenario. The proposed method provides a deep level of information that enables regional adaptation strategies: the nature of the risk, its temporal and spatial occurrence, and its potential combination with other risks. It’s a first step towards identifying potential sites for breeding crop varieties to increase the resilience of agricultural systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-58826-w